

Modern Robotics

with OpenCV

Widodo Budiharto

Science Publishing Group

548 Fashion Avenue

New York, NY 10018

http://www.sciencepublishinggroup.com

Published by Science Publishing Group 2014

Copyright © Widodo Budiharto 2014

All rights reserved.

First Edition

ISBN: 978-1-940366-12-8

This work is licensed under the Creative Commons

Attribution-NonCommercial 3.0 Unported License. To view a copy of this

license, visit

http://creativecommons.org/licenses/by-nc/3.0/

or send a letter to:

Creative Commons

171 Second Street, Suite 300

San Francisco, California 94105

USA

To order additional copies of this book, please contact:

Science Publishing Group

service@sciencepublishinggroup.com

http://www.sciencepublishinggroup.com

Printed and bound in India

http://www.sciencepublishinggroup.com/

http://www.sciencepublishinggroup.com III

Preface

Robotics is an interesting topic today. This book is written to provide an

introduction to intelligent robotics using OpenCV. This very useful book

intended for a first course in robot vision and covers modeling and

implementation of intelligent robot. The need for this textbook arose from

teaching robotics to student and hobbyist for many years and facing the

difficulty to provide excellent book to explain advanced technology in

intelligent robotics and kinematics of the robot.

This book differs from other robot vision textbooks:

 Its content is consisting of many implementations of mobile robot and

manipulator using OpenCV.

 Using newest technology in Microcontroller such as Propeller

Microcontroller for robotics.

 Its content is consisting of introduction and implementation of OpenCV

described clearly.

This textbook is the result of many years of work, research, software

development, teaching and learning. Many people have influenced its outcome

in various ways. First, I must acknowledge my rector at Binus University, Prof.

Dr. Harjanto Prabowo for his support, and my supervisors and friends. Some of

my undergraduate students have also offered assistance to this book. Finally, a

word of recognition goes to parent, my wife, and my children Tasya, Shafira,

Aziz and Yusuf.

Jakarta-Indonesia, 2014

Dr. Widodo Budiharto1

1
 Dr. Widodo Budiharto, School of Computer Science, Bina Nusantara University, Jakarta-Indonesia

Email: wbudiharto@binus.edu

http://www.sciencepublishinggroup.com V

Contents

Preface ... III

Chapter 1 Introduction to Intelligent Robotics.. 1

Introduction ... 3

History of Robot .. 3

Types of Robot .. 7

Embedded Systems for Robot ... 12

Robot Vision .. 15

Exercises .. 18

References ... 18

Chapter 2 Propeller Microcontroller .. 19

Introduction ... 21

Introduction of Propeller Chip ... 21

Programming the Propeller .. 26

Exercises .. 30

Reference ... 31

Chapter 3 Basic Programming Robot .. 33

Introduction ... 35

Robot’s Actuators .. 35

DC Motor... 35

Servo Motor ... 37

Programming Motors of Robot.. 39

Sensors for Intelligent Robot ... 43

Ultrasonic Distance Sensor: PING)))™ ... 43

Compass Module: 3-Axis HMC5883L .. 50

Gyroscope Module 3-Axis L3G4200D .. 54

PID Controller for the Robot ... 61

Contents

VI http://www.sciencepublishinggroup.com

Exercises .. 62

References ... 62

Chapter 4 Serial Communication with Robot.. 63

Introduction ... 65

Serial Interface Using Microsoft Visual Basic/C# .Net 65

Wireless Communication for Robot .. 72

433 MHz Transceiver .. 72

XBee Transceiver ... 73

RN-42 Bluetooth Module .. 74

Exercises .. 75

References ... 75

Chapter 5 Mechanics of Robots .. 77

Introduction ... 79

Introduction of Gears ... 79

Types of Gears ... 81

Rack and Pinion Gears ... 82

Arm Geometries .. 83

Kinematics of Robot .. 85

References ... 85

Chapter 6 Introduction to OpenCV .. 87

Introduction ... 89

Introduction of OpenCV .. 90

Digital Image Processing ... 97

Edge Detection .. 100

Optical Flow .. 105

References ... 108

Chapter 7 Programming OpenCV .. 109

Introduction ... 111

Morphological Filtering ... 111

Contents

http://www.sciencepublishinggroup.com VII

Camshift for Tracking Object .. 115

References ... 122

Chapter 8 Extracting the Component’s Contours for Calculating Number

of Objects .. 123

Introduction ... 125

Introduction of Contours ... 125

Counting Objects ... 127

References ... 130

Chapter 9 Face Recognition Systems .. 131

Introduction ... 133

Face Recognition in OpenCV .. 133

Haar Cascade Classifier ... 135

Face Features Detector .. 144

Face Recognition Systems ... 151

Rapid Object Detection with a Cascade of Boosted Classifiers Based on

Haar-like Features ... 152

Negative Samples ... 153

Positive Samples .. 153

Training .. 156

Test Samples .. 158

Exercises .. 159

References ... 160

Chapter 10 Intelligent Humanoid Robot .. 163

Introduction ... 165

Humanoid Robot ... 165

The Architecture of the Humanoid Robot ... 167

Ball Distance Estimation and Tracking Algorithm ... 170

A Framework of Multiple Moving Obstacles Avoidance Strategy 171

Experiments ... 173

Object Detection Using Keypoint and Feature Matching 177

Contents

VIII http://www.sciencepublishinggroup.com

References ... 183

Chapter 11 Vision-Based Obstacles Avoidance ... 185

Introduction ... 187

Obstacle Avoidance of Service Robot ... 187

Stereo Imaging Model ... 190

Probabilistic Robotics for Multiple Obstacle Avoidance Method 192

Multiple Moving Obstacles Avoidance Method and Algorithm 193

Multiple Moving Obstacle Avoidance Using Stereo Vision 198

References ... 201

Chapter 12 Vision-Based Manipulator ... 203

Introduction ... 205

Inverse Kinematics .. 205

Vision-Based Manipulator ... 206

Grasping Model ... 208

Exercise ... 212

References ... 213

Glossary .. 215

Chapter 1

Introduction to Intelligent Robotics

http://www.sciencepublishinggroup.com 3

On successful completion of this course, students will be able to:

 Explain history and definition of robot.

 Describe types of robot.

 Explain the newest technology of intelligent robotics.

 Explain the concept of embedded system for robotics.

Introduction

Robotics technology increase drastically following the demand of intelligent

robotics that able to help human kind. For robots to be intelligent in the way

people are intelligent, they will have to learn about their world, and their own

ability to interact with it, much like people do. Robot vision is a branch of

robotics that learns about acquisition and image processing for intelligent

robotics. At 2030, it is predicted that almost home duty task accomplished by

service robot that use vision sensors such as camera, it is a big challenge for us

to develop that robot. A robot is a mechanical or virtual agent, usually an

electro-mechanical machine that is guided by a computer program or electronic

circuitry. Intelligent robotics is a system that contains sensors, camera, control

systems, manipulators, power supplies and software all working together to

perform a task. That’s why the ability to develop intelligent robotics using

computer vision is a must to for the future.

History of Robot

The term Artificial Intelligence or AI stirs emotions. In 1955, John McCarthy,

one of the pioneers of AI, was the first to define the term Artificial intelligence,

roughly as follows:

The goal of AI is to develop machines that behave as though

they were intelligent.

According to McCarthy’s definition the aforementioned robots can be

described as intelligent. The word of robot is very familiar with us today [1].

The term robot was first used to denote fictional automata in a 1921 play R.U.R.

Rossum's Universal Robots by the Czech writer, Karel Čapek. According to

Čapek, the word was created by his brother, Josef from the Czech "robota",

http://en.wikipedia.org/wiki/Electromechanics
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Electronic_circuit
http://en.wikipedia.org/wiki/Electronic_circuit

Modern Robotics with OpenCV

4 http://www.sciencepublishinggroup.com

meaning servitude. In 1927, Fritz Lang's Metropolis was released; the

Maschinenmensch ("machine-human"), a gynoid humanoid robot, also called

"Parody", "Robotrix", or the "Maria impersonator" (played by German actress

Brigitte Helm), was the first robot ever to be depicted on film [2].

Figure 1.1 R.U.R by Czech Writer [2].

The history of robots has its origins in the ancient world. The modern concept

began to be developed with the onset of the industrial revolution which allowed

for the use of complex mechanics and the subsequent introduction of electricity.

This made it possible to power machines with small compact motors. In the

early 20th century, the modern formulation of a humanoid robot was developed.

Today, it is now possible to envisage human sized robots with the capacity for

near human thoughts and movement.

At ~270BC an ancient Greek engineer named Ctesibus made organs and

water clocks with movable figures. Al-Jazari (1136–1206), a Muslim inventor

during the Artuqid dynasty, designed and constructed a number of automatic

machines, including kitchen appliances, musical automata powered by water,

and the first programmable humanoid robot in 1206. Al-Jazari's robot was a

boat with four automatic musicians that floated on a lake to entertain guests at

royal drinking parties. His mechanism had a programmable drum machine with

pegs (cams) that bump into little levers that operate the percussion. The

drummer could be made to play different rhythms and different drum patterns

by moving the pegs to different locations.

Chapter 1 Introduction to Intelligent Robotics

http://www.sciencepublishinggroup.com 5

Figure 1.2 Al-Jazari's toy boat, musical automata. The first humanoid robot claimed in

the world.

In Japan, complex animal and human automata were built between the 17th

to 19th centuries, with many described in the 18th century Karakuri zui. One

such automaton was the karakuri ningyō, a mechanized puppet.

Modern Robot glory starts from 1970, when Professor Victor Scheinman at

Stanford University designed the standard manipulator. Currently, the standard

kinematics configuration known as robotic arms is still used. Finally, in 2000

Honda showed off a robot that was built many years named ASIMO, and is

followed by Sony AIBO robot dog.

http://en.wikipedia.org/wiki/Al-Jazari
http://en.wikipedia.org/wiki/Karakuri_ningy%C5%8D
http://en.wikipedia.org/wiki/Puppet

Modern Robotics with OpenCV

6 http://www.sciencepublishinggroup.com

Figure 1.3 Karakuri, robot from Japan.

Chapter 1 Introduction to Intelligent Robotics

http://www.sciencepublishinggroup.com 7

Table 1.1 The timeline of robotics development.

No. Year Description

1 1495 Around 1495 Leonardo da Vinci sketched plans for a humanoid robot.

2 1920

Karel Capek coins the word ‘robot’ to describe machines that resemble

humans in his play called Rossums Universal Robots. The play was about

a society that became enslaved by the robots that once served them.

3 1937
Alan Turing releases his paper “On Computable Numbers” which begins

the computer revolution.

4 1997
On May 11, a computer built by IBM known as Deep Blue beat world

chess champion Garry Kasparov.

5 1999

Sony releases the first version of AIBO, a robotic dog with the ability to

learn, entertain and communicate with its owner. More advanced versions

have followed.

6 2000
Honda debuts ASIMO, the next generation in its series of humanoid

robots.

7 2008

After being first introduced in 2002, the popular Roomba robotic vacuum

cleaner has sold over 2.5 million units, proving that there is a strong

demand for this type of domestic robotic technology.

8 2011

The first service robot from Indonesia named Srikandi III with the stereo

vision system and multiple obstacles avoidance ability developet at ITS

Surabay.

9 2013
Intelligent telepresence robot developed at BINUS University from

collaboration of NUNI.

10 2014
Vision based grasping model for Manipulator developed at BINUS

University - Jakarta.

Types of Robot

Robot designed to fulfill user needs. Robot types can be divided into:

 Manipulator robot, for example an arm robot.

 Wheeled robot.

 Walking robot.

 Humanoid robot.

 Aerial robot.

Modern Robotics with OpenCV

8 http://www.sciencepublishinggroup.com

 Submarine robot.

A robot has these essential characteristics:

1) Sensing, First of all your robot would have to be able to sense its

surroundings. It would do this in ways that are not unsimilar to the way

that you sense your surroundings. Giving your robot sensors: light sensors

(eyes), touch and pressure sensors (hands), chemical sensors (nose),

hearing and sonar sensors (ears), and taste sensors (tongue) will give your

robot awareness of its environment.

2) Movement, A robot needs to be able to move around its environment.

Whether rolling on wheels, walking on legs or propelling by thrusters a

robot needs to be able to move. To count as a robot either the whole robot

moves, like the Sojourner or just parts of the robot moves, like the Canada

Arm.

3) Energy, A robot needs to be able to power itself. A robot might be solar

powered, electrically powered, battery powered. The way your robot gets

its energy will depend on what your robot needs to do.

4) Programmability, it can be programmed to accomplish a large variety of

tasks. After being programmed, it operates automatically.

5) Mechanical capability, Enabling it to act on its environment rather than

merely function as a data processing or computational device (a robot is

a machine).

6) Intelligence, A robot needs to be smart. This is where programming enters

the pictures. A programmer is the person who gives the robot its 'smarts.'

The robot will have to have some way to receive the program so that it

knows what it is to do.

A manipulator is a device used to manipulate materials without direct contact.

The applications were originally for dealing with radioactive or biohazardous

materials, using robotic arms, or they were used in inaccessible places. In more

recent developments they have been used in applications such as robotically-

assisted surgery and in space. It is an arm-like mechanism that consists of a

series of segments, usually sliding or jointed, which grasp and move objects

with a number of degrees of freedom.

Robot manipulators are created from a sequence of link and joint

combinations. The links are the rigid members connecting the joints, or axes.

The axes are the movable components of the robotic manipulator that cause

relative motion between adjoining links. The mechanical joints used to

http://www.thetech.org/exhibits_events/online/robotics/universal/page09.html
http://www.nature.com/nsu/010607/010607-3.html
http://www.militaryaudiology.org/
http://www.nature.com/nsu/020107/020107-3.html

Chapter 1 Introduction to Intelligent Robotics

http://www.sciencepublishinggroup.com 9

construct the robotic arm manipulator consist of five principal types. Two of the

joints are linear, in which the relative motion between adjacent links is non-

rotational, and three are rotary types, in which the relative motion involves

rotation between links.

The arm-and-body section of robotic manipulators is based on one of four

configurations. Each of these anatomies provides a different work envelope and

is suited for different applications.

1) Gantry - These robots have linear joints and are mounted overhead. They

are also called Cartesian and rectilinear robots.

2) Cylindrical - Named for the shape of its work envelope, cylindrical

anatomy robots are fashioned from linear joints that connect to a rotary

base joint.

3) Polar - The base joint of a polar robot allows for twisting and the joints are

a combination of rotary and linear types. The work space created by this

configuration is spherical.

4) Jointed-Arm - This is the most popular industrial robotic configuration.

The arm connects with a twisting joint, and the links within it are

connected with rotary joints. It is also called an articulated robot [3].

Figure 1.4 4 DOF Manipulator / arm robot from Lynxmotion suitable for education

(source: lynxmotion.com).

As the development of robot technology, the capability of the robot to "see"

or vision based robot has been developed such as ASIMO, a humanoid robot

created by Honda. With a height of 130 centimeters and weighs 54 kilograms,

Modern Robotics with OpenCV

10 http://www.sciencepublishinggroup.com

the robot resembles the appearance of an astronaut with the ability fingers

capable to handling egg. ASIMO can walk on two legs with a gait that

resembles a human to a speed of 6 km / h. ASIMO was created at Honda's

Research and Development Center in Wako Fundamental Technical Research

Center in Japan. The model is now the eleventh version, since the

commencement of the ASIMO project in 1986. According to Honda, ASIMO is

an acronym for "Advanced Step in Innovative Mobility" (a big step in the

innovative movement). This robot has a height of 130cm with a total of 34 DOF

and use 51.8V LI-ION rechargeable and the ability and mechanical grip better.

Figure 1.5 ASIMO Robot [4].

The rapid development of robot technology has demanded the presence of

intelligent robots capable of complement and assisted the work of man. The

ability to develop robots capable of interacting today is very important, for

example, the development of educational robot NAO from France and Darwin

OP from Korea. In the latest development of robot vision are generally

Chapter 1 Introduction to Intelligent Robotics

http://www.sciencepublishinggroup.com 11

humanoid form, requires the Linux embedded module that can process images

from the camera quickly. For example, Smart Humanoid robot package Ver. 2.0

for general-purpose robot soccer or created by authors who have the

specification:

 CM-530 (Main Controller-ARM Cortex (32bits) with AX-12A (Robot

Exclusive Actuator, Dynamixel).

 AX-18A (Robot Exclusive Actuator, Dynamixel).

 Gyro Sensor (2 Axis) dan Distance measurement system.

 RC-100A (Remote Controller).

 Rechargeable Battery (11V, Li-Po, 1000mA/PCM).

 Balance Battery Charger.

 Humanoid Aluminum frame full set.

 Gripper frame set.

 1.7GHz Quad core ARM Cortex-A9 MPCore.

 2GB Memory with Linux UBuntu.

 6 x High speed USB2.0 Host port.

 10/100Mbps Ethernet with RJ-45 LAN Jack.

Figure 1.6 Smart Humanoid ver 2.0 using embedded system and webcam based on

LINUX Ubuntu.

Modern Robotics with OpenCV

12 http://www.sciencepublishinggroup.com

Embedded Systems for Robot

The robotics system requires adequate processor capabilities such as the

ability of the processor speed, memory and I / O facilities. The figure below is a

block diagram of an intelligent robotics that can be built by beginners.

Figure 1.7 Embedded system for intelligent robotics.

From the picture above, the point is you can use a variety of microprocessor /

microcontroller to make the robot as smart as possible. You may use the

standard minimum systems such as Propeller, AVR, Basic Stamp, and Arm

Cortex with extraordinary abilities. All inputs are received by the sensors will

be processed by the microcontroller. Then through the programs that we have

made microprocessor / microcontroller will take action to the actuator such as a

robot arm and the robot legs or wheels. Wireless technology used for the

purposes of the above if the robot can transmit data or receive commands

remotely. While the PC / Laptop is used to program and perform computational

processes data / images with high speed, because it is not able to be done by a

standard microcontroller. To provide power supply to the robots, we can use dry

battery or solar cell. For the purposes of the experiment, can be used as a

Chapter 1 Introduction to Intelligent Robotics

http://www.sciencepublishinggroup.com 13

standard microcontroller for main robot controller as shown below using

Arduino Mega:

Figure 1.8 Single chip solution for robot using Arduino Mega.

The figure shows that the standard microcontroller technologies such as AVR,

Arduino or Propeller and Arm Cortex, can be used as the main controller of

mobile robots. Technology sensors and actuators can be handled well using a

microcontroller with I2C capability for data communication between the

microcontrollers with a serial devices others. Some considerations in choosing

the right microcontroller for the robot is the number of I / O, ADC capability,

and signal processing features, RAM and Flash program memory. In a complex

robot that requires a variety of sensors and large input the number, often takes

more than one controller, which uses the principle of master and slave. In this

model there is a 1 piece main controller which functions to coordinate the slave

microcontroller.

In general, to drive the robots there are several techniques such as:

 Single wheel drive, which is only one front wheel that can move to the

right and to the left of the steering.

Modern Robotics with OpenCV

14 http://www.sciencepublishinggroup.com

 Differential drive, where 2 wheels at the back to adjust the direction of

motion of the robot.

 Synchronous drive, which can drive a 3 wheeled robot.

 Pivot drive, It is composed of a four wheeled chassis and a platform that

can be raised or lowered.The wheels are driven by a motor for translation

motion in a straight line.

 Tracked robot uses wheels tank.

Figure 1.10 Tank Robot DFRobot Rover ver.2 using Arduino and XBee for Wireless

Communication (source:robotshop.com).

 Ackermaan steering, where the motion of the robot is controlled by the 2

front wheels and 2 rear wheels.

 Omni directional drives, where the motion of the robot can be controlled 3

or 4 wheel system that can rotate in any direction, so that the orientation of

the robot remains. Omniwheel useful because the orientation of the robot is

fix with the standard wheel angle α1 = 0°,α2 = 120° and α3 = 240°. Global

frame [x, y] represents robot’s environment and the location of robot can

be represented as (. The global velocity of robot can be represented

as .

Chapter 1 Introduction to Intelligent Robotics

http://www.sciencepublishinggroup.com 15

Figure 1.11 Mobile Robot with omni directional drive systems (source:

nexusrobot.com).

Robot Vision

There are several important terms in the robot vision interconnected,

including computer vision, machine vision and robot vision. Computer vision is

the most important technology in the future in the development of interactive

robots. Computer Vision is a field of knowledge that focuses on the field of

artificial intelligence and systems associated with acquisition and image

processing. Machine vision is implemented process technology for image -

based automatic inspection, process control, and guiding robots in various

industrial and domestic applications. Robot vision is the knowledge about the

application of computer vision in the robot. The robot needs vision information

to decide what action is to be performed. The application is currently in robot

vision are as robot navigation aids, search for the desired object, and other

environmental inspection. Vision on the robot becomes very important because

it received more detailed information than just the proximity sensor or other

sensors. For example, the robot is able to recognize whether the detected object

is a person's face or not. Furthermore, an advanced vision system on the robot

makes the robot can distinguish a face accurately (Face recognition system

using PCA method, LDA and others) [6] [10]. The processing of the input

image from the camera to have meaning for the robots known as visual

perception, starting from image acquisition, image preprocessing to obtain the

Modern Robotics with OpenCV

16 http://www.sciencepublishinggroup.com

desired image and noise-free, for example, feature extraction to interpretation as

shown in Figure 1.12. For example, for customer identification and avoidance

of multiple moving obstacles based vision, or to drive the servo actuator to steer

the camera as it leads to a face (face tracking) [4].

Figure 1.12 Perception model for a stereo vision [11].

An example of intelligent robotics is a humanoid robot HOAP-1 with stereo

vision for navigation system. HOAP-1 is a commercial humanoid robot from

Fujitsu Automation Ltd. and Fujitsu Laboratories Ltd. for behavior research. In

the vision sub-system of HOAP-1, the depth map generator calculate depth map

image from stereo images. The path planning sub-system generate a path from

the current position to the given goal position while avoid obstacles.

Figure 1.13 Example of Vision-based Navigation system for Humanoid robot

HOAP-1 [12].

Chapter 1 Introduction to Intelligent Robotics

http://www.sciencepublishinggroup.com 17

Another example is a telepresence robot developed by author as shown in

figure 1.14. The test was conducted by running Microsoft IIS and Google

Application Engine on the laptop. When the servers were ready, Master

Controller, implemented by using a laptop, opened the application through web

browser that support WebRTC and entered 192.168.1.101 which was the

address of both servers to open it. This is not a problem because the servers

were running on different ports. After the connections were established, Master

controller then received image and sound stream from the robot and sent back

image and sound from Master Controller web camera to the robot. Experiments

of intelligent telepresence robot had been tested by navigating the robot to staff

person and to avoid obstacles in the office. Face tracking and recognition based

on eigenspaces with 3 images every person had been used and a databases of the

images had been developed. The robot was controlled using integrated web

application (ASP.Net and WebRTC) from Master Control. With a high speed

Internet connection, simulated using wireless router that had speed around 1

Mbps, the result of video conferencing was noticeable smooth.

Figure 1.14 Intelligent Telepresence robot using omniwheel and controlled

using Web [11].

Images collected by a robot during the embodied object recognition scenario

often capture objects from a non- standard viewpoint, scale, or orientation. In

subsequent development, artificial intelligence for the robot to recognize and

understand the human voice, attentive to the various motion listener and able to

provide a natural response by the robot are challenge ahead to build future

robots.

Modern Robotics with OpenCV

18 http://www.sciencepublishinggroup.com

Exercises

1) Explain the history of robots.

2) Explain the roles of computer vision in robotics.

3) Describe types of drive systems for robot.

4) Develop a block diagram of tank robot using embedded system.

5) Find out the advantages of stereo vision.

References

[1] E. Wolfgang, Introduction to Artificial Intelligence, Springer Publisher, 2011.

[2] www.wikipedia.org.

[3] http://www.galileo.org/robotics/intro.html.

[4] Asimo.honda.com.

[5] Budiharto W., Santoso A., Purwanto D., Jazidie A., Multiple moving obstacles for

service robot using Stereo Vision, Telkomnika Journal, Vol. 9 no.3, 2011.

[6] M. Spong, Hutchinson & Vidyasagar, Robot Modelling and Control, Wiley, 2001.

[7] Daiki Ito, Robot Vision, Nova Publisher, 2009.

[8] Budiharto W., Santoso A., Purwanto D., Jazidie A., A Navigation System for

Service robot using Stereo Vision, International conference on Control,

Automation and Systems, Korea, pp 101-107, 2011.

[9] Hutchinson S., Hager G., Corke P., A tutorial on visual servo control, IEEE Trans.

On Robotics and Automation, vol. 12(5), pp. 651-670, 1996.

[10] Budiharto W., Purwanto D., Jazidie A., A Robust Obstacle Avoidance for Service

Robot using Bayesian Approach, International Journal of Advanced Robotic

Systems, Intech publisher, vol 8(1), 2011.

[11] Budiharto, W., The framework of Intelligent telepresence robot based on stereo

vision, Journal of Computer Science, vol. 8, pp. 2062-2067, 2012.

[12] Okada K., et.al, Walking Navigation System of Humanoid Robot using Stereo

Vision based Floor Recognition and Path Planning with Multi-Layered Body

Image, Proceedings of the 2003 IEEE International COnference on Intelligent

Robots and System, Nevada, 2003.

http://www.wikipedia.org/

Chapter 2

Propeller Microcontroller

http://www.sciencepublishinggroup.com 21

On successful completion of this course, students will be able to:

 Describe some of popular microcontrollers.

 Explain how to program the Propeller Microcontroller.

 Assembly a simple mobile robot using microcontroller.

Introduction

Microcontroller is the main controller for electronic devices today, including

robots. Microcontroller well-known and readily available today are AVR, PIC,

Arduino, Propeller, ATmega 8535, ATmega16, ATmega32 and Basic Stamp.

Some other well-known brands eg 16F877 PIC and Basic Stamp 2. Parallax

Propeller microcontroller from one of the latest generation 32-bit

microcontroller that is capable of computing high-speed data. This

microcontroller has many advantages especially can be used for image

processing. Therefore, this microcontroller is used as the main control system of

our robot.

Introduction of Propeller Chip

Do you like programming? With eight 32-bit processors in one chip,

integrating peripheral devices is suddenly simplified with the Propeller. A

Parallax creation from the silicon on up, the Propeller chip’s unique architecture

and languages will change the way you think about embedded system design.

The Propeller chip gives programmers both the power of true multi-processing

and deterministic control over the entire system.

Each of the Propeller chip’s processors, called cogs, can operate

simultaneously, both independently and cooperatively with other cogs, sharing

access to global memory and the system clock in a round-robin fashion through

a central hub. Each cog has access to all 32 I/O pins, with pin states being

tracked in its own input, output and direction registers. Each cog also has its

own memory, 2 counter modules, and a video generator module capable of

producing NTSC, PAL & VGA signals. Propeller Specifications:

 Lanuages: Spin (native, object-based), Assembly (native low-level),

C/C++ (via PropGCC).

Modern Robotics with OpenCV

22 http://www.sciencepublishinggroup.com

 Power Requirements: 3.3 VDC.

 Operating Temperature: -55 to +125 degrees C.

 Processors (Cogs): 8.

 I/O Pins: 32 CMOS.

 External Clock Speed: DC to 80 MHz.

 Internal RC Oscillator: ~12 MHz or ~20 kHz.

 Execution Speed: 0 to 160 MIPS (20 MIPS/cog).

 Global ROM/RAM: 32768/32768 bytes.

 Cog RAM: 512 x 32 bits/cog.

The Propeller is used in many industries including manufacturing, process

control, robotics, automotive and communications. Hobbyists and engineers

alike are finding new uses for this powerful microcontroller every day. The

Propeller is a good choice over other microcontrollers when a low system part

count is desirable due to its ability to provide direct video output and an easy

interface to external peripherals such as keyboard, mouse and VGA monitor.

Pre-written objects to support many types of hardware also make it an attractive

option. All of this plus low cost and a powerful, yet easy language are hard to

beat in a world where microcontrollers come in so many flavors that it’s hard to

make a choice.

The Propeller chip is a multicore microcontroller that is programmable in

high-level languages (Spin™ and C) as well as a low-level (Propeller assembly)

language. Application development is simplified by using the set of pre-built

objects for video (NTSC/PAL/VGA), mice, keyboards, LCDs, stepper motors

and sensors. Propeller is easily connected to your computer's serial or USB port

for programming using our Prop Plug. The Propeller chip can run on its own

with a 3.3-volt power supply, internal clock, and with its internal RAM for code

storage. Add an external EEPROM for non-volatile code storage and an external

clock source for accurate timing.

The Propeller Tool Software is the primary development environment for

Propeller programming in Spin and Assembly Language. It includes many

features to facilitate organized development of object-based applications: multi-

file editing, code and document comments, color-coded blocks, keyword

highlighting, and multiple window and monitor support aid in rapid code

development. We can use the board such as Propeller Robot board or Propeller

http://www.parallax.com/node/1227

Chapter 2 Propeller Microcontroller

http://www.sciencepublishinggroup.com 23

Board of Education for learning Propeller easily for robotics as shown in figure

2.1.

(a)

(b)

Figure 2.1 Propeller Chip P8X32A in LQFP package (a) and Propeller Board of

Education (b).

Modern Robotics with OpenCV

24 http://www.sciencepublishinggroup.com

Table 2.1 pins description of propeller chip.

Pin Name Direction Description

PO-P31 I/O

General purpose I/O Port A. Can source/sink 40 mA

each at 3.3 VDC.

Logic threshold is ≈ VDD; 1.65 VDC @ 3.3 VDC.

The pins shown below have a special purpose upon

power-up/reset but are general purpose I/O afterwards.

P28 – 12C SCL connection to optional, external

EEPROM.

P29 – 12C SDA connection to optional, external

EEPROM.

P30 – Serial Tx to host.

P31 – Serial Rx from host.

VDD --- 3.3 volt power (2.7 – 3.3 VDC).

VSS --- Ground.

BOEn I

Brown Out Enable (active low). Must be connected to

either VDD or VSS. If low, RESn becomes a weak

output (delivering VDD through 5 KΩ) for monitoring

purposes but can still be driven low to cause reset. If

high, RESn is CMOS input with Schmitt Trigger.

RESn I/O

Reset (active low). When low, resets the Propeller chip:

all cogs disabled and I/O pins floating. Propeller restarts

50 ms after RESn transitions from low to high.

XI I

Crystal Input. Can be connected to output of

crystal/oscillator pack (with XO left disconnected), or

to one leg of crystal (with XO connected to other leg of

crystal or resonator) depending on CLK Register

settings. No external resistors or capacitors are required.

XO O

Crystal Output. Provides feedback for an external

crystal, or may be left disconnected depending on CLK

Register settings. No external resistors or capacitors are

required.

The Propeller 2 is a whole-system, high-speed mulitcore chip for future

embedded applications requiring real-time parallel control. Production

customers asked for features that are now standard in Propeller 2: A/D, code

protect, large RAM with freedom to download a C kernel or Spin interpreter

during program. With easy coding for video (VGA, composite and component

for HD), human interface devices, sensors and output devices, the Propeller 2 is

Chapter 2 Propeller Microcontroller

http://www.sciencepublishinggroup.com 25

effective for quick prototype and production projects with limited time to

market.

The Stingray robot from Parallax Inc. provides a mid-size platform for a wide

range of robotics projects and experiments. The Propeller Robot Control Board

is the brains of the system providing a multiprocessor control system capable of

performing multiple tasks at the same time. The Propeller chip provides eight

32-bit processors each with two counters, its own 2 KB local memory and 32

KB shared memory. This makes the Propeller a perfect choice for advanced

robotics and the Stingray robot. The board use is Propeller Robot Board

complete with the USB Programmer, 64KB EEPROM AT24C512 and DC

motor driver 7.2V as shown below:

Figure 2.2 Propeller Robot Control Board and the pins.

The general picture of the robot’s assembly to produce differential wheeled

robot models as shown below, and a complete description of the assembly can

be read from manual of this robot:

Modern Robotics with OpenCV

26 http://www.sciencepublishinggroup.com

Figure 2.3 The general description of asembleing the body, motors and the controller

of the robot.

Programming the Propeller

We need USB/Serial programmer to program this chip, note that the

connections to the external oscillator and EEPROM, which are enclosed in

dashed lines, are optional as shown in figure 2.4 or figure 2.5 for serial

programmer:

Chapter 2 Propeller Microcontroller

http://www.sciencepublishinggroup.com 27

Figure 2.4 The minimum system of Propeller DIP-40 and the programmer.

The cheapest programmer for Propeller show below:

Figure 2.5 Schematic of serial programmer for Propeller.

Modern Robotics with OpenCV

28 http://www.sciencepublishinggroup.com

After installing the Propeller tool software, the codes can be uploaded to the

chip by pressing F11 as shown below:

Figure 2.6 Programming the chip.

For basic experiments, we will try to program the LED lights on / off as well

as receive input from switches. Install LED lights and switches on the

protoboard are provided on the controller board as follows:

Figure 2.7 Schematic for basic testing of Propeller.

Here's an example of making light LED on / off at pin 4, save the file names

and contents LEDOnOffP4.spin by pressing F11, make sure the board Propeller

detected on the USB port of your computer:

Chapter 2 Propeller Microcontroller

http://www.sciencepublishinggroup.com 29

File: LEDOnOffP4.spin

PUB LedOnOff

dira[4] := 1 ' P4 → output

repeat

outa[4] := 1 ' P4 → on

waitcnt(clkfreq/4 + cnt) ' delay

outa[4] := 0 ' P4 → off

waitcnt(clkfreq/4 + cnt)

Figure 2.8 The USB connector and FTDI 232RL chip successfully detected the

microcontroller.

Use the LEDS, resistors and pluggable wires to create the circuit shown in

schematic below on the breadboard. The pluggable wires will jumper to the

breadboard to make the I/O and ground connections from the control board

locations shown below. Ground can be obtained from the bottom row of pins

(marked B) on the I/O headers. P0 and P1 are picked up from the top row

(marked W) and are indicated on the silkscreen on the control board. Power is

obtained from the center row (marked R) and its voltage is set by the jumper

immediately to the right of that group of headers.

Figure 2.9 The schematic for using standard transistor.

Modern Robotics with OpenCV

30 http://www.sciencepublishinggroup.com

The code for testing the transistor for driving LED shown below:

File: LED_Test.spin

CON

_xinfreq = 5_000_000 ' External Crystal freqwency

_clokmode = xtal1 + pll16x ' Enabled external crystal and PLL

x16

PUB Main

Dira[1..0] := %11 ' Set P0 and P1 to output

Repeat

Out[0] := 1 ' P0 HIGH

Outa[1] := 0 ' P1 LOW

Waitcnt (clkfreq/2 + cnt) ' Delay ½ clock frequency (1/2

detik)

Out[0] :=0 ' P0 LOW

Outa[1] := 1 ' P1 HIGH

Waitcnt (clkfreq/2 + cnt) ' Delay ½ clock frequency (1/2

detik)

The next example is made in P6 LED lights on / off dependent input from

P21, see what the output is generated when the switch is pressed in P21.

File: ButtonToLed.spin

PUB ButtonLED ' Pushbutton/LED Method

dira[6]:= 1 ' P6 → output

dira[21] := 0 ' P21 → input

repeat ' Endless loop

outa[6] := ina[21] ' Copy P21 input to P6 ouput

That is a basic example of programming using the Propeller chip, you have to

try other basic programming lies in the examples folder and library in the

Propeller Tool program.

Exercises

1) Describe and compare features of some popular microcontrollers.

2) Design a minimum system for mobile robot using Propeller chip.

Chapter 2 Propeller Microcontroller

http://www.sciencepublishinggroup.com 31

3) Create a program for Running LED using Propeller.

4) Create a program to control 2 DC Motors with an IC Driver L298 using

switch.

Reference

[1] Parallax.com.

Chapter 3

Basic Programming Robot

http://www.sciencepublishinggroup.com 35

On successful completion of this course, students will be able to:

 Explain about robot’s actuators.

 Program the sensors and motors for robot.

Introduction

Robot becomes a new trend of students and engineers, especially with a main

event and a robotics Olympiad each year. Programming the robot using

microcontroller is the basic principle of controlling the robot, where the

orientation of the microcontroller is to control the application of an information

system based on the inputs received, and processed by a microcontroller, and

the action performed on the output corresponding predetermined program.

Robot’s Actuators

Actuators are an important part of the robot that functions as an activator of

the command given by the controller. Usually, an electromechanical actuator

device produces movement. Actuator consists of two types:

 Electric Actuators.

 Pneumatic and Hydraulic Actuators.

In this sub-section will discuss the electric actuator which is often used as a

producer of such rotational motion of the motor.

DC Motor

A DC Motor in simple words is a device that converts direct current

(electrical energy) into mechanical energy. It’s of vital importance for the

industry today, and is equally important for engineers to look into the working

principle of DC motor in details. The very basic construction of a DC motor

contains a current carrying armature which is connected to the supply end

through commutator segments and brushes and placed within the north south

poles of a permanent or an electro-magnet as shown in the figure below:

Modern Robotics with OpenCV

36 http://www.sciencepublishinggroup.com

Figure 3.1 DC Motor diagram.

To understand the operating Principle of DC motor, it is important that we

have a clear understanding of Fleming’s left hand rule to determine the direction

of force acting on the armature conductors of dc motor. Fleming’s left hand rule

says that if we extend the index finger, middle finger and thumb of our left hand

in such a way that the current carrying conductor is placed in a magnetic field

(represented by the index finger) is perpendicular to the direction of current

(represented by the middle finger), then the conductor experiences a force in the

direction (represented by the thumb) mutually perpendicular to both the

direction of field and the current in the conductor.

http://www.electrical4u.com/fleming-left-hand-rule-and-fleming-right-hand-rule/
http://www.electrical4u.com/fleming-left-hand-rule-and-fleming-right-hand-rule/

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 37

Figure 3.2 Fleming’s left hand rule.

Figure below displays a DC motor with gearbox used on the robot to improve

torque:

Figure 3.3 An example of DC Motor with gearbox 7.2V 310RPM.

Servo Motor

Another important actuators are servo motors, which can work the wheel or

as a robot arm or gripper. Servo motors are often used is continuous Servo

Parallax, Parallax standard servo, GWS-S03, Hitec HS-805BB and HS-725BB.

Some of the grippers are often used in the lab. Robot gripper usually based on

http://www.electrical4u.com/fleming-left-hand-rule-and-fleming-right-hand-rule/

Modern Robotics with OpenCV

38 http://www.sciencepublishinggroup.com

aluminum, lynxmotion robotic gripper hand and fingers are very popular as

follows:

(a) (b)

Figure 3.4 Lynxmotion robot hand RH1 with 2 servos (a) and gripper finger

using 5 servos to 14 joint (b).

Author recommends that you conduct experiments and make system-based

visual servoing robotic arm that can pick up an object using a robotic arm based

stereo camera. The robot arm is best used Dagu 6 degress of freedom and

AX18FCM5 Smart Robotic arm that uses the CM-5 controller, Full feedback

for position, speed, load, voltage and temperature, full control over position

(300 degrees), uses servo AX-18F and is compatible with MATLAB and other

common microcontroller systems.

(a) (b)

Figure 3.5 Dagu 6 degree freedom arm robotic system using aluminum Dagu gripper

(a) and AX18FCM5 Smart Robotic arm using CM-5 controller (b)[1].

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 39

Programming Motors of Robot

DC motors are usually driven by an H-Bridge since such a circuit can reverse

the polarity of the motor connected to it. The DC brushed motors included in

this kit are driven by the L6205 H-Bridge on the Propeller Robot Control Board.

Understanding how to control this H-Bridge is the key to controlling the

direction, speed and duration that the motors are on or off. Parallax has released

a Propeller object called, “PWM_32” which makes it easy to drive servos as

well as control motors using pulse width modulation. This object can be used

with the Propeller Robot Control Board to drive the on-board H-Bridge, which

in turn drives the DC motors.

The L6205 inputs are connected to P24 through P27 on the Propeller chip.

When the power switch on the control board is set for POWER ON/MOTORS

ON, the L6205 is enabled and the outputs are connected to the motors. The truth

table for controlling the L6205 is shown below in Table 3.1. P24 and P25

control the left motor while P26 and P27 control the right motor. This table

assumes the motors are connected to the control board as defined in the

assembly instructions.

Table 3.1 Motor truth table.

P24 P25 P26 P27 Left Motor Right Motor

0 0 0 0 Brake Brake

1 0 0 0 Reverse Brake

0 1 0 0 Forward Brake

1 1 0 0 Brake Brake

0 0 1 0 Brake Forward

1 0 1 0 Reverse Forward

0 1 1 0 Forward Forward

1 1 1 0 Brake Forward

0 0 0 1 Brake Reverse

1 0 0 1 Reverse Reverse

0 1 0 1 Forward Reverse

1 1 0 1 Brake Reverse

0 0 1 1 Brake Brake

1 0 1 1 Reverse Brake

0 1 1 1 Forward Brake

1 1 1 1 Brake Brake

Modern Robotics with OpenCV

40 http://www.sciencepublishinggroup.com

Note that it may be more intuitive to look at the table as two groups

consisting of P24/P25 and P26/P27. In this manner you have 4 possible

combinations for each motor as shown in Table 3.2.

Table 3.2 The value given to P24 and P25 and P26 and 27 for the motors.

P24 P25 Left Motor P26 P27 Right Motor

0 0 Brake 0 0 Brake

1 0 Reverse 1 0 Forward

0 1 Forward 0 1 Reverse

1 1 Brake 1 1 Brake

The program to make the left motor active is shown below:

File: LeftMotorTest.spin

CON

_xinfreq = 5_000_000

_clkmode =xtal1 + pll16x

PUB Main

Dira[27..24] := %1111 ' Set P24 – P27 to output

Outa [25] : = 1 ' Left motor forward

Waitcnt (clkfreq * 2 + cnt) ' 2 seconds pause

Outa [25] :=0 ' Left motor stop

Waitcnt (clkfreq * 2 + cnt)

Outa[24] :=1 ' Left motor reverse

Waitcnt (clkfreq * 2 + cnt)

Outa[24] :=0

repeat

To control the speed of a DC motor can use PWM (Pulse Width Modulation),

with the following example:

File : PWMx8.spin

CON

resolution = 256 'The number of steps in the pulse

widths. Must be an integer multiple of 4.

nlongs = resolution / 4

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 41

VAR

long fcb[5]

long pwmdata[nlongs]

long pinmask

long previndex[8]

byte cogno, basepin

PUB start(base, mask, freq)

' This method is used to setup the PWM driver and start its cog.

If a driver had

' already been started, it will be stopped first. The arguments

are as follows:

' base: The base pin of the PWM output block. Must be 0, 8,

16, or 24.

' mask: The enable mask for the eight pins in the block:

' bit 0 = basepin + 0

' bit 1 = basepin + 1

' ...

' bit 7 = basepin + 7

'

' Set a bit to 1 to enable the corresponding pin for

PWM ouput.

'

' freq: The frequency in Hz for the PWM output.

'

if (cogno)

stop

freq *= resolution

if (clkfreq =< 4000000 or freq > 20648881 or clkfreq < freq *

135 / 10 or clkfreq / freq > 40000 or base <> base & %11000 or

mask <> mask & $ff or resolution <> resolution & $7ffffffc)

return false

basepin := base

pinmask := mask << base

longfill(@pwmdata, 0, nlongs)

longfill(@previndex, 0, 8)

fcb[0] := nlongs

fcb[1] := freq

fcb[2] := constant(1 << 29 | 1 << 28) | base << 6 | mask

Modern Robotics with OpenCV

42 http://www.sciencepublishinggroup.com

fcb[3] := pinmask

fcb[4] := @pwmdata

if (cogno := cognew(@pwm, @fcb) + 1)

return true

else

return false

PUB stop

' This method is used to stop an already-started PWM driver. It

returns true if

' a driver was running; false, otherwise.

if (cogno)

cogstop(cogno - 1)

cogno~

return true

else

return false

PUB duty(pinno, value) | vindex, pindex, i, mask, unmask

' This method defines a pin's duty cycle. It's arguments are:

' pinno: The pin number of the PWM output to modify.

' value: The new duty cycle (0 = 0% to resolution = 100%)

' Returns true on success; false, if pinno or value is invalid.

if (1 << pinno & pinmask == 0 or value < 0 or value >

resolution)

return false

pinno -= basepin

mask := $01010101 << pinno

unmask := !mask

vindex := value >> 2

pindex := previndex[pinno]

if (vindex > pindex)

repeat i from pindex to vindex - 1

pwmdata[i] |= mask

elseif (vindex < pindex)

repeat i from pindex to vindex + 1

pwmdata[i] &= unmask

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 43

pwmdata[vindex] := pwmdata[vindex] & unmask | mask &

($ffffffff >> (31 - ((value & 3) << 3)) >> 1)

previndex[pinno] := vindex

return true

Sensors for Intelligent Robot

Ultrasonic Distance Sensor: PING)))™

PING)))™ ultrasonic sensor provides an easy method of distance

measurement. This sensor is perfect for any number of applications that require

you to perform measurements between moving or stationary objects. Interfacing

to a microcontroller is a snap. A single I/O pin is used to trigger an ultrasonic

burst (well above human hearing) and then "listen" for the echo return pulse.

The sensor measures the time required for the echo return, and returns this value

to the microcontroller as a variable-width pulse via the same I/O pin. The

PING))) sensor works by transmitting an ultrasonic (well above human hearing

range) burst and providing an output pulse that corresponds to the time required

for the burst echo to return to the sensor. By measuring the echo pulse width,

the distance to target can easily be calculated.

Key Features:

 Provides precise, non-contact distance measurements within a 2 cm to 3 m

range for robotics application.

 Ultrasonic measurements work in any lighting condition, making this a

good choice to supplement infrared object detectors.

 Simple pulse in/pulse out communication requires just one I/O pin.

 Burst indicator LED shows measurement in progress.

 3-pin header makes it easy to connect to a development board, directly or

with an extension cable, no soldering required.

The PING))) sensor detects objects by emitting a short ultrasonic burst and

then "listening" for the echo. Under control of a host microcontroller (trigger

pulse), the sensor emits a short 40 kHz (ultrasonic) burst. This burst travels

through the air, hits an object and then bounces back to the sensor. The PING)))

sensor provides an output pulse to the host that will terminate when the echo is

detected, hence the width of this pulse corresponds to the distance to the target.

Modern Robotics with OpenCV

44 http://www.sciencepublishinggroup.com

Figure 3.6 The basic principle of ultrasonic distance sensor [2].

Figure 3.7 Communication protocol of the PING))).

This circuit allows you to quickly connect your PING))) sensor to a BASIC

Stamp/Propeller Board. The PING))) module’s GND pin connects to Vss, the 5

V pin connects to Vdd, and the SIG pin connects to I/O pin P15.

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 45

Figure 3.8 PING))) to the board.

Here is an example of using the Ping sensor shown in Serial LCD 4x20.

File: Ping_Demo.spin

CON

_clkmode = xtal1 + pll16x

_xinfreq = 5_000_000

PING_Pin = 15 ' I/O Pin For PING)))

LCD_Pin = 1 ' I/O Pin For LCD

LCD_Baud = 19_200 ' LCD Baud Rate

LCD_Lines = 4 ' Parallax 4X20 Serial LCD (#27979)

VAR

long range

OBJ

LCD: "debug_lcd"

ping: "ping"

PUB Start

LCD.init(LCD_Pin, LCD_Baud, LCD_Lines) ' Initialize LCD

Object

LCD.cursor(0) ' Turn Off Cursor

LCD.backlight(true) ' Turn On Backlight

LCD.cls ' Clear Display

LCD.str(string("PING))) Demo", 13, 13, "Inches -", 13,

"Centimeters -"))

Modern Robotics with OpenCV

46 http://www.sciencepublishinggroup.com

repeat ' Repeat Forever

LCD.gotoxy(15, 2) ' Position Cursor

range := ping.Inches(PING_Pin) ' Get Range In Inches

LCD.decx(range, 2) ' Print Inches

LCD.str(string(".0 ")) ' Pad For Clarity

LCD.gotoxy(14, 3) ' Position Cursor

range := ping.Millimeters(PING_Pin) ' Get Range In

Millimeters

LCD.decf(range / 10, 3) ' Print Whole Part

LCD.putc(".") ' Print Decimal Point

LCD.decx(range // 10, 1) ' Print Fractional Part

waitcnt(clkfreq / 10 + cnt) ' Pause 1/10 Second

Robot avoider is a robot that able to avoid the obstacle at the in front of the

robot or at the left or right side of the robot. Here's an example using a PING)))

as an avoider robot that only able to detect the obstacle in front of the robot

using 1 PING))).

Serial_LCD_Avoider.spin:

‘ Copyright Dr. Widodo Budiharto

‘ www.toko-elektronika.com 2014

CON

_clkmode = xtal1 + pll16x

_xinfreq = 5_000_000

LCD_PIN = 23

PING_Pin = 13 ' I/O Pin For PING)))

LCD_Baud = 19_200

LCD_Lines=2

VAR

long range

OBJ

Serial : "FullDuplexSerial.spin"

LCD : "debug_lcd"

ping : "ping"

PUB Main

Dira[27..24]:= %1111 ' Set P24 P27 to be output

http://www.toko-elektronika.com/

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 47

LCD.init(LCD_Pin, LCD_Baud, LCD_Lines) ' Initialize LCD

Object

LCD.cursor(0) ' Turn Off Cursor

LCD.backlight(true) ' Turn On Backlight

LCD.cls

LCD.gotoxy(3, 0) ' Clear Display

LCD.str(string("WIDODO.COM"))

repeat

range := ping.Millimeters(PING_Pin) ' Get Range In

Millimeters

LCD.gotoxy(3, 1)

LCD.decf(range / 10, 3) ' Print Whole Part

LCD.putc(".") ' Print Decimal Point

LCD.decx(range // 10, 1) ' Print Fractional Part

LCD.gotoxy(10, 1)

LCD.str(string("Cm"))

if range >400

Outa [24] :=0 ' Left motor stop

Outa [27] :=0 ' Right motor stop

waitcnt(clkfreq / 2 + cnt) '

Outa[25]:= 1 ' Left motor forward

Outa[26]:= 1 ' Right motor forward

waitcnt(clkfreq / 10 + cnt) ' Pause 1/10 Second

if range <=400

'reverse

Outa[25]:= 0 ' Left motor stop

Outa[26]:= 0 ' Right motor stop

waitcnt(clkfreq / 2 + cnt) ' Pause

Outa [24] :=1 ' Left motor reverse

Outa [27] :=1 ' Right motor reverse

'turn left

Outa [24] :=1 ' Left motor reverse

Outa [27] :=0 ' Right motor stop

waitcnt(clkfreq/5 + cnt) ' Pause 1/10 Second

Outa [24] :=0 ' Left motor stop

Outa [27] :=0 ' Right motor stop

Modern Robotics with OpenCV

48 http://www.sciencepublishinggroup.com

Now, if we want an intelligent robot that able to avoid the obstacle using 3

PING))), we can propose the system as shown in figure 3.9.

Figure 3.9 Avoider robot using 3 PING))) on the body.

Avoider_LCD_3PING.spin

‘ Avoider Robot, copyright Dr. Widodo Budiharto, 2014

CON

_clkmode = xtal1 + pll16x

_xinfreq = 5_000_000

LCD_PIN = 23

PINGRight_Pin=0 ' I/O Pin For PING)))

PINGFront_Pin = 13

PINGLeft_Pin=22

LCD_Baud = 19_200

LCD_Lines=2

VAR

long rangeFront

long rangeRight

long rangeLeft

OBJ

Serial : "FullDuplexSerial.spin"

LCD : "debug_lcd"

ping : "ping"

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 49

PUB Main

Dira[27..24]:= %1111 ' Set P24 P27 to be output

LCD.init(LCD_Pin, LCD_Baud, LCD_Lines) ' Initialize LCD Object

LCD.cursor(0) ' Turn Off Cursor

LCD.backlight(true) ' Turn On Backlight

LCD.cls

LCD.gotoxy(3, 0) ' Clear Display

LCD.str(string("WIDODO.COM"))

waitcnt(clkfreq/2 + cnt) ' Pause 1/10 Second

repeat

rangeFront := ping.Millimeters(PINGFront_Pin) ' Get Range In

Millimeters

rangeRight := ping.Millimeters(PINGRight_Pin) ' Get Range In

Millimeters

rangeLeft := ping.Millimeters(PINGLeft_Pin) ' Get Range In

Millimeters

LCD.gotoxy(0, 1)

LCD.decf(rangeLeft / 10, 3) ' Print Whole Part

LCD.gotoxy(5, 1)

LCD.decf(rangeFront / 10, 3) ' Print Whole Part

LCD.putc(".") ' Print Decimal Point

LCD.decx(rangeFront // 10, 1) ' Print Fractional Part

LCD.gotoxy(12, 1)

LCD.decf(rangeRight / 10, 3)

if rangeFront >200 and rangeRight>200

LCD.cls

LCD.gotoxy(3, 0) ' Clear Display

LCD.str(string("FORWARD"))

Outa [24] :=0 ' Left motor stop

Outa [27] :=0 ' Right motor stop

waitcnt(clkfreq / 2 + cnt) '

Outa[25]:= 1 ' right motor forward

Outa[26]:= 1 ' left motor forward

waitcnt(clkfreq / 10 + cnt) ' Pause 1/10 Second

if rangeFront <=200

LCD.cls

Modern Robotics with OpenCV

50 http://www.sciencepublishinggroup.com

'reverse

LCD.gotoxy(3, 0) ' Clear Display

LCD.str(string("REFERSE"))

Outa[25]:= 0 ' left motor stop

Outa[26]:= 0 ' right motor stop

waitcnt(clkfreq / 5 + cnt) ' Pause

Outa [24] :=1 ' Left motor reverse

Outa [27] :=1 ' Right motor reverse

waitcnt(clkfreq + cnt) ' Pause

if rangeRight<=200

LCD.cls

'turn left

LCD.gotoxy(3, 0) ' Clear Display

LCD.str(string("TURN LEFT"))

Outa [24] :=0 ' Left motor stop

Outa [27] :=0 ' Right motor stop

waitcnt(clkfreq/10 + cnt) ' Pause 1/10 Second

Outa[25]:= 1 ' left motor forward

waitcnt(clkfreq/2 + cnt) ' Pause 1/10 Second

Outa[25]:= 0 ' left motor stop

if rangeLeft<=200

LCD.cls

'turn right

LCD.gotoxy(3, 0) ' Clear Display

LCD.str(string("TURN RIGHT"))

Outa [24] :=0 ' Left motor stop

Outa [27] :=0 ' Right motor stop

waitcnt(clkfreq/10 + cnt) ' Pause 1/10 Second

Outa[26]:= 1 ' right motor forward

waitcnt(clkfreq/2 + cnt) ' Pause 1/10 Second

Outa[26]:= 0 ' right motor stop

Compass Module: 3-Axis HMC5883L

The Compass Module 3-Axis HMC5883L is designed for low-field magnetic

sensing with a digital interface. This compact sensor fits into small projects

such as UAVs and robot navigation systems. The sensor converts any magnetic

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 51

field to a differential voltage output on 3 axes. This voltage shift is the raw

digital output value, which can then be used to calculate headings or sense

magnetic fields coming from different directions.

Key Features:

 Measures Earth’s magnetic fields.

 Precision in-axis sensitivity and linearity.

 Designed for use with a large variety of microcontrollers with different

voltage requirements.

 3-Axis magneto-resistive sensor.

 1 to 2 degree compass heading accuracy.

 Wide magnetic field range (+/-8 gauss).

 Fast 160 Hz maximum output rate.

 Measures Earth’s magnetic field, from milli-gauss to 8 gauss.

(a)

 (b)

Figure 3.10 Compass module (a) and the schematic (b).

Here is an example code for using Compass module:

DemoCompass.spin:

Modern Robotics with OpenCV

52 http://www.sciencepublishinggroup.com

OBJ

pst : "FullDuplexSerial" ' Comes with Propeller Tool

CON

_clkmode = xtal1 + pll16x

_clkfreq = 80_000_000

datapin = 1 ' SDA of compass to pin P1

clockPin = 0 ' SCL of compass to pin P0

WRITE_DATA = $3C ' Requests Write operation

READ_DATA = $3D ' Requests Read operation

MODE = $02 ' Mode setting register

OUTPUT_X_MSB = $03 ' X MSB data output register

VAR

long x

long y

long z

PUB Main

waitcnt(clkfreq/100_000 + cnt) ' Power up delay

pst.start(31, 30, 0, 115200)

SetCont

repeat

SetPointer(OUTPUT_X_MSB)

getRaw ' Gather raw data from compass

pst.tx(1)

ShowVals

PUB SetCont

' Sets compass to continuous output mode

start

send(WRITE_DATA)

send(MODE)

send($00)

stop

PUB SetPointer(Register)

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 53

' Start pointer at user specified register (OUT_X_MSB)

start

send(WRITE_DATA)

send(Register)

stop

PUB GetRaw

' Get raw data from continuous output

start

send(READ_DATA)

x := ((receive(true) << 8) | receive(true))

z := ((receive(true) << 8) | receive(true))

y := ((receive(true) << 8) | receive(false))

stop

~~x

~~z

~~y

x := x

z := z

y := y

PUB ShowVals

' Display XYZ compass values

pst.str(string("X="))

pst.dec(x)

pst.str(string(", Y="))

pst.dec(y)

pst.str(string(", Z="))

pst.dec(z)

pst.str(string(" "))

PRI send(value)

value := ((!value) >< 8)

repeat 8

dira[dataPin] := value

dira[clockPin] := false

Modern Robotics with OpenCV

54 http://www.sciencepublishinggroup.com

dira[clockPin] := true

value >>= 1

dira[dataPin] := false

dira[clockPin] := false

result := !(ina[dataPin])

dira[clockPin] := true

dira[dataPin] := true

PRI receive(aknowledge)

dira[dataPin] := false

repeat 8

result <<= 1

dira[clockPin] := false

result |= ina[dataPin]

dira[clockPin] := true

dira[dataPin] := aknowledge

dira[clockPin] := false

dira[clockPin] := true

dira[dataPin] := true

PRI start

outa[dataPin] := false

outa[clockPin] := false

dira[dataPin] := true

dira[clockPin] := true

PRI stop

dira[clockPin] := false

dira[dataPin] := false

Gyroscope Module 3-Axis L3G4200D

The Gyroscope Module is a low power 3-Axis angular rate sensor with

temperature data for UAV, IMU Systems, robotics and gaming. The gyroscope

shows the rate of change in rotation on its X, Y and Z axes. Raw angular rate

and temperature data measurements are accessed from the selectable digital I2C

or SPI interface. The small package design and SIP interface accompanied by

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 55

the mounting hole make the sensor easy to integrate into your projects.

Designed to be used with a variety of microcontrollers, the module has a large

operating voltage window.

Key Features:

 3-axis angular rate sensor (yaw, pitch & roll) make it great for model

aircraft navigation systems.

 Supports both I2C and SPI for whichever method of communication you

desire.

 Three selectable scales: 250/500/2000 degrees/sec (dps).

 Embedded power down and sleep mode to minimize current draw.

 16 bit-rate value data output.

Figure 3.11 Gyroscope Module 3-Axis L3G4200D (a) and general schematic (b).

Program below demonstrates X, Y, Z output to a serial terminal and uses

default (I²C) interface on the Gyroscope mo dule.

Gyro_Demo.spin

CON

Modern Robotics with OpenCV

56 http://www.sciencepublishinggroup.com

_clkmode = xtal1 + pll16x

_clkfreq = 80_000_000

SCLpin = 2

SDApin = 4

'****Registers****

WRITE = $D2

READ = $D3

CTRL_REG1 = $20 'SUB $A0

CTRL_REG3 = $22

CTRL_REG4 = $23

STATUS_REG = $27

OUT_X_INC = $A8

x_idx = 0

y_idx = 1

z_idx = 2

VAR

long x

long y

long z

long cx

long cy

long cz

long ff_x

long ff_y

long ff_z

long multiBYTE[3]

OBJ

Term : "FullDuplexSerial"

PUB Main | last_ticks

''Main routine for example program - Shows RAW X,Y,Z data and

example of calculated data for degrees

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 57

term.start(31, 30, 0, 115200) 'start a terminal Object

(rxpin, txpin, mode, baud rate)

Wrt_1B(CTRL_REG3, $08) 'set up data ready signal

Wrt_1B(CTRL_REG4, $80) 'set up "block data update" mode

(to avoid bad reads when the values would get updated while we

are reading)

Wrt_1B(CTRL_REG1, $1F) 'write a byte to control

register one (enable all axis, 100Hz update rate)

Calibrate

last_ticks := cnt

repeat 'Repeat indefinitely

term.tx(1) 'Set Terminal data at top of screen

WaitForDataReady

Read_MultiB(OUT_X_INC) 'Read out multiple bytes starting

at "output X low byte"

x := x - cx 'subtract calibration out

y := y - cy

z := z - cz

' at 250 dps setting, 1 unit = 0.00875 degrees,

' that means about 114.28 units = 1 degree

' this gets us close

x := x / 114

y := y / 114

z := z / 114

RawXYZ 'Print the Raw data output of X,Y and Z

PUB RawXYZ

''Display Raw X,Y,Z data

term.str(string("RAW X ",11))

term.dec(x)

term.str(string(13, "RAW Y ",11))

term.dec(y)

term.str(string(13, "RAW Z ",11))

term.dec(z)

Modern Robotics with OpenCV

58 http://www.sciencepublishinggroup.com

PUB Calibrate

cx := 0

cy := 0

cz := 0

repeat 25

WaitForDataReady

Read_MultiB(OUT_X_INC) ' read the 3 axis values and

accumulate

cx += x

cy += y

cz += z

cx /= 25 ' calculate the average

cy /= 25

cz /= 25

PUB WaitForDataReady | status

repeat

status := Read_1B(STATUS_REG) ' read the ZYXZDA bit

of the status register (looping until the bit is on)

if (status & $08) == $08

quit

PUB Wrt_1B(SUB1, data)

''Write single byte to Gyroscope.

start

send(WRITE) 'device address as write

command

'slave ACK

send(SUB1) 'SUB address = Register MSB 1 =

reg address auto increment

'slave ACK

send(data) 'data you want to send

'slave ACK

stop

PUB Wrt_MultiB(SUB2, data, data2)

''Write multiple bytes to Gyroscope.

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 59

start

send(WRITE) 'device address as write command

'slave ACK

send(SUB2) 'SUB address = Register MSB 1 = reg address

auto increment

'slave ACK

send(data) 'data you want to send

'slave ACK

send(data2) 'data you want to send

'slave ACK

stop

PUB Read_1B(SUB3) | rxd

''Read single byte from Gyroscope

start

send(WRITE) 'device address as write command

'slave ACK

send(SUB3) 'SUB address = Register MSB 1 = reg

address auto increment

'slave ACK

stop

start 'SR condition

send(READ) 'device address as read command

'slave ACK

rxd := receive(false) 'recieve the byte and put in

variable rxd

stop

result := rxd

PUB Read_MultiB(SUB3)

''Read multiple bytes from Gyroscope

start

send(WRITE) 'device address as write command

'slave ACK

send(SUB3) 'SUB address = Register MSB 1 = reg

address auto increment

'slave ACK

stop

Modern Robotics with OpenCV

60 http://www.sciencepublishinggroup.com

start 'SR condition

send(READ) 'device address as read command

'slave ACK

multiBYTE[x_idx] := (receive(true)) | (receive(true)) << 8

'Receives high and low bytes of Raw data

multiBYTE[y_idx] := (receive(true)) | (receive(true)) << 8

multiBYTE[z_idx] := (receive(true)) | (receive(false)) << 8

stop

x := ~~multiBYTE[x_idx]

y := ~~multiBYTE[y_idx]

z := ~~multiBYTE[z_idx]

PRI send(value) ' I²C Send data - 4 Stack Longs

value := ((!value) >< 8)

repeat 8

dira[SDApin] := value

dira[SCLpin] := false

dira[SCLpin] := true

value >>= 1

dira[SDApin] := false

dira[SCLpin] := false

result := not(ina[SDApin])

dira[SCLpin] := true

dira[SDApin] := true

PRI receive(aknowledge) ' I²C receive data - 4 Stack Longs

dira[SDApin] := false

repeat 8

result <<= 1

dira[SCLpin] := false

result |= ina[SDApin]

dira[SCLpin] := true

dira[SDApin] := (aknowledge)

dira[SCLpin] := false

dira[SCLpin] := true

dira[SDApin] := true

Chapter 3 Basic Programming Robot

http://www.sciencepublishinggroup.com 61

PRI start ' 3 Stack Longs

outa[SDApin] := false

outa[SCLpin] := false

dira[SDApin] := true

dira[SCLpin] := true

PRI stop ' 3 Stack Longs

dira[SCLpin] := false

dira[SDApin] := false

PID Controller for the Robot

A PID controller is used to make a quantity (like position) reach a target

value (a target position). The first thing a PID controller does is to calculate the

error e(t). The PID controller algorithm involves three separate constant

parameters, and is accordingly sometimes called three-term control: the

proportional, the integral and derivative values, denoted P, I, and D. Simply put,

these values can be interpreted in terms of time: P depends on the present error,

I on the accumulation of past errors, and D is a prediction of future errors, based

on current rate of change. The weighted sum of these three actions is used to

adjust the process via a control element such as the position of a motor. The

controller attempts to minimize the error by adjusting (an Output). The model

of PID Controller shown in fig. 3.11:

Figure 3.12 General PID Controller.

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Proportionality_%28mathematics%29
http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Derivative

Modern Robotics with OpenCV

62 http://www.sciencepublishinggroup.com

The output of a PID controller, equal to the control input to the system, in the

time-domain is as follows:

 (3.1)

In Propeller microcontroller, we can use Propeller Object Exchange named A

quadrature encoder and PID controller driver that runs in one cog. The code has

been fully optimized with a super simple spin interface for maximum speed and

is also fully commented. It provides full support for getting the quadrature

encoder's current position and position delta in ticks and setting the quadrature

encoders current speed in ticks per second through PID control through a

standard DC motor.

Exercises

1) Write a motor speed controller using PID.

2) Write a program for fire fighter robot using flame sensor, distance sensor

and compass to follow the side of the wall.

References

[1] Crustcrawler.com.

[2] www.parallax.com.

http://www.parallax.com/

Chapter 4

Serial Communication with Robot

http://www.sciencepublishinggroup.com 65

On successful completion of this course, students will be able to:

 Explain principle of serial communication for robotics.

 Program the mobile robot using serial and wireless

communication.

 Develop an interface program using Visual Basic/C# .Net.

Introduction

We need data communication to sending and receiving serial data using RS-

232 Communication or wirelessly between microcontrollers or to a PC. 433

MHz RF Transceiver with Low power consumption makes it ideal for use in

battery-powered applications. Data is sent and received by AM or CPCA

modulation, thus offering a higher average output power which extends the

range. Digi XBee 802.15.4 modules are the easiest-to-use, most reliable and

cost-effective RF devices we’ve experienced. The 802.15.4 XBee modules

provide two friendly modes of communication – a simple serial method of

transmit/receive or a framed mode providing advanced features. XBee are ready

to use out of the package, or they can be configured through the X-CTU utility

or from your microcontroller.

Serial Interface Using Microsoft Visual Basic/C# .Net

RS-232 stands for Recommend Standard number 232 and C is the latest

revision of the standard. The serial ports on most computers use a subset of the

RS-232C standard. The full RS-232C standard specifies a 25-pin "D" connector

of which 22 pins are used. Most of these pins are not needed for normal PC

communications, and indeed, most new PCs are equipped with male D type

connectors having only 9 pins. The baud unit is named after Jean Maurice Emile

Baudot, who was an officer in the French Telegraph Service. He is credited with

devising the first uniform-length 5-bit code for characters of the alphabet in the

late 19th century. What baud really refers to is modulation rate or the number of

times per second that a line changes state. This is not always the same as bits

per second (BPS). If you connect two serial devices together using direct cables

then baud and BPS are in fact the same. Thus, if you are running at 19200 BPS,

then the line is also changing states 19200 times per second.

Modern Robotics with OpenCV

66 http://www.sciencepublishinggroup.com

There are two basic types of serial communications, synchronous and

asynchronous. With Synchronous communications, the two devices initially

synchronize themselves to each other, and then continually send characters to

stay in sync. Even when data is not really being sent, a constant flow of bits

allows each device to know where the other is at any given time. That is, each

character that is sent is either actual data or an idle character. Synchronous

communications allows faster data transfer rates than asynchronous methods,

because additional bits to mark the beginning and end of each data byte are not

required. The serial ports on IBM-style PCs are asynchronous devices and

therefore only support asynchronous serial communications.

Asynchronous means "no synchronization", and thus does not require sending

and receiving idle characters. However, the beginning and end of each byte of

data must be identified by start and stop bits. The start bit indicate when the

data byte is about to begin and the stop bit signals when it ends. The

requirement to send these additional two bits causes asynchronous

communications to be slightly slower than synchronous. When transmitting a

byte, the UART (serial port) first sends a START BIT which is a positive

voltage (0), followed by the data (general 8 bits, but could be 5, 6, 7, or 8 bits)

followed by one or two STOP BITs which is a negative(1) voltage. The

sequence is repeated for each byte sent. Figure 4.1 shows a diagram of a byte

transmission would look like.

Figure 4.1 Serial communication format[1].

To create a serial interface program for PC, we can use many programming

languages such as Visual Basic, Visual C # or Borland Delphi. Ms. Visual C #.

Net 2010/2013 is one of the programming languages that allow us to create GUI

applications for communication with the robot. There SerialPort class can be

used to access serial port. Program for serial communication on propeller is

quite easy because it uses objects, such as Parallax Serial Terminal, for example:

Chapter 4 Serial Communication with Robot

http://www.sciencepublishinggroup.com 67

Figure 4.2 Serial communication between PC and the Propeller Microcontroller.

You can download Ms. Visual Studio 2013 Express edition to use this

program. Once installed, create a form like the following by putting 2 button,

Modern Robotics with OpenCV

68 http://www.sciencepublishinggroup.com

combobox, richtextbox, label and textbox. The program will connect to the

microcontroller as a robot controller.

Figure 4.3 Form design for interfacing between PC and Robot.

The program will read a text file and then its value will be used to issue serial

data to the robot with the following code:

If (txtData.Text = "1") Then

lblAksi.Text = "forward"

serialPort.Write("a") 'forward

End If

If (txtData.Text = "0") Then

lblAksi.Text = "backward"

serialPort.Write("b") 'backward

Here is the complete code for serial interface to program the robot:

SerialInterface.vb

imports System.IO

Public Class Form1

Dim WithEvents serialPort As New IO.Ports.SerialPort

Chapter 4 Serial Communication with Robot

http://www.sciencepublishinggroup.com 69

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles MyBase.Load

displayPort()

cbComPorts.SelectedIndex = 1

End Sub

Private Sub btnConnect_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles btnConnect.Click

If serialPort.IsOpen Then

serialPort.Close()

End If

Try

With serialPort ‘configuring port

.PortName = cbComPorts.Text

.BaudRate = 9600

.Parity = IO.Ports.Parity.None

.DataBits = 8

.StopBits = IO.Ports.StopBits.One

End With

serialPort.Open()

lblMessage.Text = cbComPorts.Text & " Connected"

btnConnect.Enabled = False

btnDisconnect.Enabled = True

Catch ex As Exception

MsgBox(ex.ToString)

End Try

Timer1.Enabled = True

Timer1.Interval = 100

End Sub

Private Sub datareceived(ByVal sender As Object, ByVal e As

System.IO.Ports.SerialDataReceivedEventArgs) Handles

serialPort.DataReceived

'RichTextBox1.Invoke(New myDelegate(AddressOf updateTextBox),

New Object() {})

End Sub

Public Sub updatetextbox()

RichTextBox1.Text = ""

Modern Robotics with OpenCV

70 http://www.sciencepublishinggroup.com

With RichTextBox1

.AppendText(serialPort.ReadExisting)

End With

End Sub

Private Sub btnDisconnect_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles btnDisconnect.Click

Try

serialPort.Close()

lblMessage.Text = serialPort.PortName & " Disconnected ."

btnConnect.Enabled = True

btnDisconnect.Enabled = False

Catch ex As Exception

MsgBox(ex.ToString)

End Try

End Sub

Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles Timer1.Tick

Try

Dim fs As New FileStream("c:/position.txt", FileMode.Open,

FileAccess.Read)

txtData.Text = ""

Dim d As New StreamReader(fs)

d.BaseStream.Seek(0, SeekOrigin.Begin)

While d.Peek() > -1

txtData.Text &= d.ReadLine()

End While

d.Close()

If (txtData.Text = "1") Then

lblAksi.Text = "forward"

serialPort.Write("a") 'forward

End If

If (txtData.Text = "0") Then

lblAksi.Text = "backward"

serialPort.Write("b") 'backward

End If

Chapter 4 Serial Communication with Robot

http://www.sciencepublishinggroup.com 71

Catch ea As Exception

'MessageBox.Show(ea.Message)

End Try

End Sub

End Class

The following programs are used in the Propeller to receive serial data from a

PC:

File: SerialPCRobot.spin

CON

_clkmode = xtal1 + pll16x

_xinfreq = 5_000_000

OBJ

Debug: "FullDuplexSerialPlus

PUB TestMessages| c

c:="S"

dira[8] := 1

dira[9] := 1

dira[10] := 1

outa[8] := 0

outa[9] := 0

outa[10] := 0

''Send test messages to Parallax Serial Terminal.

Debug.start(31, 30, 0, 9600)

Debug.str(string("Demo!", 13))

repeat until c == "Q" or c == "q"

c := Debug.rx

case c

"A", "a":

Debug.Str(String("forward"))

outa[8] := 1

outa[9] := 0

outa[10] := 0

waitcnt(clkfreq/10 + cnt)

case c

Modern Robotics with OpenCV

72 http://www.sciencepublishinggroup.com

"B", "b":

Debug.Str(String("backward"))

outa[8] := 0

outa[9] := 1

outa[10] := 0

waitcnt(clkfreq/10 + cnt)

"C", "c":

Debug.Str(String("turn left"))

outa[8] := 0

outa[9] := 0

outa[10] := 1

waitcnt(clkfreq/10 + cnt)

"Q", "q": quit

Wireless Communication for Robot

433 MHz Transceiver

433 MHz Transceiver is an easy-to-use module is capable of sending and

receiving serial data wirelessly between microcontrollers or to a PC. Low power

consumption makes it ideal for use in battery-powered applications. Data is sent

and received by AM or CPCA modulation, thus offering a higher average

output power which extends the range. This module is equipped with an RSSI

feature that can be utilized to improve power efficiency by waking up circuitry

only when an external signal is detected.

Chapter 4 Serial Communication with Robot

http://www.sciencepublishinggroup.com 73

Figure 4.4 Wireless communication using 433 MHz Transeiver.

XBee Transceiver

XBee 1 mW Wire Antenna 802.15.4 modules are the easiest-to-use, most

reliable and cost-effective RF devices we’ve experienced. The 802.15.4 XBee

modules provide two friendly modes of communication – a simple serial

method of transmit/receive or a framed mode providing advanced features.

XBees are ready to use out of the package, or they can be configured through

the X-CTU utility or from your microcontroller. These modules can

communicate point to point, from one point to a PC, or in a mesh network.

You only need to choose an antenna style (PCB or wire) and power level (1

mW for up to 300 ft and 60 mW for up to 1 mile). The PCB antenna version

provides a lower profile footprint for applications with limited space while the

Modern Robotics with OpenCV

74 http://www.sciencepublishinggroup.com

wire antenna version allows for more flexibility in adjusting for optimal range at

the same output power. XBee 802.15.4 modules are cross-compatible with other

802.15.4 XBee modules, regardless of antenna type or power rating.

Key Features:

 Outdoor range up to 300 feet (90 m) line of sight.

 Indoor range up to 100 feet (30 m).

 Data rate up to 250 Kbps.

 2.4 GHz frequency band (accepted world-wide).

Figure 4.5 Wireless ommunication using XBee.

XBee Transceiver AT-API Object is an object for communicating with Digi's

XBee (designed/tested with Series 1 - 802.15.4) transceivers in both transparent

(AT) and API mode. API mode involves framed data with information such as

sender's address and RSSI levels.
RN-42 Bluetooth Module

The RN-42 Bluetooth Module provides a reliable method for creating a

wireless serial communication interface between two devices such as a

microcontroller, PC, cell phone, or another module for robotics application.

This module can pair up with devices supporting Bluetooth SPP (Serial Port

Profile) to establish a serial interface. The RN-42 Bluetooth Module is

breadboard-friendly and is compatible with all 5 V and 3.3 V microcontroller

platforms.

Chapter 4 Serial Communication with Robot

http://www.sciencepublishinggroup.com 75

Key Features:

 Fully qualified Bluetooth 2.1/2.0/1.2/1.1 module provides compatibility

with many devices.

 Low power consumption for long-lasting battery-powered projects.

 Auto-connect/discovery/pairing modes make connecting to other modules

easy.

 LED indicators provide visual status of connection/mode.

 Voltage jumper selects for use with 5 V and 3.3 V microcontrollers.

When pairing the RN-42 with another device such as a laptop or cell phone

the default passkey is “1234”. The device is discovered as RN42-xxxx (where

xxxx is the last 4 digits of the device MAC address). On a PC with Bluetooth

the device will have a COM port assigned to it. When this COM port is opened

the PC should reconnect to the module (the Blue LED should light up). At this

point you can send/receive serial data.

Exercises

1) Write an interface using C# to control robot using PC.

2) Write wireless program to control robot using PC.

References

[1] Stallings W., Data and Computer Communications, Prentice Hall Publisher, 2011.

[2] www.parallax.com.

http://www.parallax.com/

Chapter 5

Mechanics of Robots

http://www.sciencepublishinggroup.com 79

On successful completion of this course, students will be able to:

 Explain principle of some mechanics devices for robots.

 Describe some type of gears.

 Describe about arm geometries.

 Describe about kinematics of robot.

Introduction

In intelligent robotics, a manipulator is a device used to manipulate materials

without direct contact. For example, using robotic arms, we can develop

robotically-assisted surgery. It is an arm-like mechanism that consists of a series

of segments, usually sliding or jointed, which grasp and move objects with a

number of degrees of freedom. Modern robotics needs excellent gears. A good

understanding of how gears affect parameters such as torque and velocity are

very important. Gears work on the principle of mechanical advantage. This

means that by using different gear diameters, you can exchange between

rotational (or translation) velocity and torque.

Introduction of Gears

With gears, you will exchange the high velocity with a better torque. This

exchange happens with a very simple equation that you can calculate:

Torque_Old * Velocity_Old = Torque_New * Velocity_New

Torque_Old and Velocity_Old can be found simply by looking up the

datasheet of your motor. Then what you need to do is put a desired torque or

velocity on the right hand side of the equation. So for example, suppose your

motor outputs 3 lb-in torque at 2000rps according to the datasheet, but you only

want 300rps. This is what your equation will look like:

3 lb-in * 2000rps = Torque_New * 300rps

Then you can then determine that your new torque will be 20 lb-in. The

gearing ratio is the value at which you change your velocity and torque. Again,

it has a very simple equation. The gearing ratio is just a fraction which you

multiple your velocity and torque by. Suppose your gearing ratio is 3/1. This

Modern Robotics with OpenCV

80 http://www.sciencepublishinggroup.com

would mean you would multiple your torque by 3 and your velocity by the

inverse or 1/3 [5].

Example: Torque_Old = 10 lb-in, Velocity_Old = 100rps

Gearing ratio = 2/3

Torque * 2/3 = 6.7 lb-in

Velocity * 3/2 = 150rps

Figure 5.1 Torque that generates to rotates gear B equal to FA x RA.

If you wanted a simple gearing ratio of say 2 to 1, you would use two gears,

one being twice as big as the other. It isn't really the size as much as the

diameter ratio of the two gears. If the diameter of one gear is 3 times bigger

than the other gear, you would get a 3/1 (or 1/3) gearing ratio. You can easily

figure out the ratio by hand measuring the diameter of the gears you are using.

For a much more accurate way to calculate the gearing ratio, calculate the ratio

of teeth on the gears. If one gear has 28 teeth and the other has 13, you would

have a (28/13=2.15 or 13/28=.46) 2.15 or .46 gearing ratio. I will go into this

later, but this is why worm gears have such high gearing ratios. In a worm gear

setup, one gear always has a single tooth, while the other has many - a

guaranteed huge ratio. Counting teeth will always give you the most exact ratio.

Unfortunately, by using gears, you lower your input to output power

efficiency. This is due to obvious things such as friction, misalignment of

http://www.societyofrobots.com/mechanics_gears.shtml#wormgears
http://www.societyofrobots.com/mechanics_statics.shtml#friction

Chapter 5 Mechanics of Robots

http://www.sciencepublishinggroup.com 81

pressure angles, lubrication, gear backlash (spacing between meshed gear teeth

between two gears) and angular momentum, etc. For example, suppose you use

two spur gears, you would typically expect efficiency to be around 90%. To

calculate, multiply that number by your Velocity_New and Torque_New to get

your true output velocity and torque [3][4].

Gearing ratio = 2/3

Torque * 2/3 = 6.7 lb-in

Velocity * 3/2 = 150rps

true torque = 6.7 * .9 = 6 lb-in

true velocity = 150 * .9 = 135rps

Types of Gears

Some types of gears have high efficiencies, or high gearing ratios, or work at

different angles, for example. Often manufacturers will give you expected

efficiencies in the datasheets for their gears. Remember, wear and lubrication

will also dramatically affect gear efficiencies. Spur gears are the most

commonly used gears due to their simplicity and the fact that they have the

highest possible efficiency of all gear types. Not recommend for very high loads

as gear teeth can break more easily.

Figure 5.2 Spur Gears, with ~ 90 % efficiency.

Two gears with a chain can be considered as three separate gears. Since there

is an odd number, the rotation direction is the same. They operate basically like

spur gears, but due to increased contact area there is increased friction (hence

lower efficiency). Lubrication is highly recommended.

http://www.societyofrobots.com/mechanics_dynamics.shtml#momentum

Modern Robotics with OpenCV

82 http://www.sciencepublishinggroup.com

Figure 5.3 Sprocket Gears With Chains, with ~80% efficiency.

Worm gears have a very high gearing ratio. To mathematically calculate,

consider the worm gear as a single tooth. Another advantage to the worm gear is

that it is not back-drivable. What this means is only your motor can rotate the

main gear, so things like gravity or counter forces will not cause any rotation.

This is good say if you have a robot arm holding something heavy, and you

don't want to waste power on holding torque.

Figure 5.4 Worm Gears with ~70% efficiency.

Rack and Pinion Gears

Rack and Pinion is the type of gearing found in steering systems. This

gearing is great if you want to convert rotational motion into translational.

Mathematically, use radius = 1 for the straight 'gear'.

http://www.societyofrobots.com/robot_arm_tutorial.shtml

Chapter 5 Mechanics of Robots

http://www.sciencepublishinggroup.com 83

Figure 5.5 Rack and Pinion, with ~90% efficiency.

Arm Geometries

Generally, there are five configurations robots used in industry, namely:

Cartesian Robot, Robot Cylindrical, Spherical Robots, Articulated Robots

(consist of revolute joint RRR), SCARA (Selectively Compliant Assembly

Robot Arm). They are named for the shape of the volume that the manipulator

can reach and orient the gripper into any position—the work envelope. They all

have their uses, but as will become apparent, some are better for use on robots

than others. Some use all sliding motions, some use only pivoting joints, some

use both. Pivoting joints are usually more robust than sliding joints but, with

careful design, sliding or extending can be used effectively for some types of

tasks [1].

The Denavit-Hartenberg (DH) Convention is the accepted method of drawing

robot arms in FBD's. There are only two motions a joint could make: translate

and rotate. There are only three axes this could happen on: x, y, and z (out of

plane). Below I will show a few robot arms, and then draw The Robot Arm Free

Body Diagram (FBD). A cartesian coordinate robot (also called linear robot) is

an industrial robot whose three principal axes of control are linear (i.e. they

move in a straight line rather than rotate) and are at right angles to each other.

Cartesian coordinate robots with the horizontal member supported at both ends

are sometimes called Gantry robots. [2]

http://en.wikipedia.org/wiki/Industrial_robot
http://en.wikipedia.org/wiki/Principal_axis_%28mechanics%29
http://en.wikipedia.org/wiki/Right_angle
http://en.wikipedia.org/wiki/Cartesian_coordinate

Modern Robotics with OpenCV

84 http://www.sciencepublishinggroup.com

(a) (b)

Figure 5.6 Example of SCARA Configuration (a) and articulated (b).

Example of Manipulator for industry is KUKA KR 5 arc rounds off the range

of KUKA robots at the lower end. Its payload of 5 kg makes it outstandingly

well-suited to standard arc welding tasks. With its attractive price and compact

dimensions, it is the ideal choice for your application too. Whether mounted on

the floor or inverted overhead, the KR 5 arc always performs its tasks reliably.

Figure 5.7 KUKA Manipulator for Industry suitable for welding, soldering and

painting [6].

Chapter 5 Mechanics of Robots

http://www.sciencepublishinggroup.com 85

Kinematics of Robot

Kinematics studies the motion of bodies without consideration of the forces

or moments that cause the motion. Robot kinematics refers the analytical study

of the motion of a robot manipulator. Formulating the suitable kinematics

models for a robot mechanism is very crucial for analyzing the behavior of

industrial manipulators. Robot kinematics applies geometry to the study of the

movement of multi-degree of freedom kinematic chains that form the structure

of robotic systems. Robot kinematics studies the relationship between the

dimensions and connectivity of kinematic chains and the position, velocity and

acceleration of each of the links in the robotic system, in order to plan and

control movement and to compute actuator forces and torques.

The robot kinematics can be divided into forward kinematics and inverse

kinematics. Forward kinematics problem is straightforward and there is no

complexity deriving the equations. Hence, there is always a forward kinematics

solution of a manipulator. Inverse kinematics is a much more difficult problem

than forward kinematics. The solution of the inverse kinematics problem is

computationally expensive and generally takes a very long time in the real time

control of manipulators. In forward kinematics, given the length of each link

and the angle of each joint, we can find the position of any point (it’s x,y,z

coordinates). And for inverse kinematics, given the length of each link and the

position of some point on the robot, we can find the angles of each joint needed

to obtain that position.

References

[1] E. Sandin (2003), Paul, Robot Mechanism and Mechanical Devices Illustrated,

Mc-Graw Hill.

[2] C. Dorf, Richard (2000), The Electrical Engineering Handbook, CRC Press LLC.

[3] http://www.societyofrobots.com/mechanics_gears.shtml.

[4] B., Owen (2007), Robot Builder’s Cookbook, Elsevier Ltd.

[5] http://www.fi.edu/time/Journey/Time/Escapements/geartypes.htm.

[6] KUKA-robotics.com.

http://www.fi.edu/time/Journey/Time/Escapements/geartypes.htm

Chapter 6

Introduction to OpenCV

http://www.sciencepublishinggroup.com 89

On successful completion of this course, students will be able to:

 Explain the roles of Computer Vision.

 Install OpenCV for image processing.

 Use CANNY Edge detector.

Introduction

Computer vision is the most important technology in the future in the

development of intelligent robot. Computer vision is in the simplest terms,

computer vision is the discipline of "teaching machines how to see." This field

dates back more than forty years, but the recent explosive growth of digital

imaging technology makes the problems of automated image interpretation

more exciting and relevant than ever. Computer vision and machine vision

differ in how images are created and processed. Computer vision is done with

everyday real world video and photography. Machine vision is done in

oversimplified situations as to significantly increase reliability while decreasing

cost of equipment and complexity of algorithms.

As a scientific discipline, computer vision is concerned with the theory

behind artificial systems that extract information from images. The image data

can take many forms, such as video sequences, views from multiple cameras, or

multi-dimensional data from a medical scanner. As a technological discipline,

computer vision seeks to apply its theories and models to the construction of

computer vision systems. Examples of applications of computer vision include

systems for:

 Navigation, e.g., by an autonomous mobile robot;

 Detecting events, e.g., for visual surveillance or people counting;

 Organizing information, e.g., for indexing databases of images and image

sequences;

 Modeling objects or environments, e.g., medical image analysis or

topographical modeling;

 Interaction, e.g., as the input to a device for computer-human interaction,

and;

 Automatic inspection, e.g., in manufacturing applications.

http://en.wikipedia.org/wiki/People_counter
http://en.wikipedia.org/wiki/Computer-human_interaction

Modern Robotics with OpenCV

90 http://www.sciencepublishinggroup.com

Computer vision is fast moving towards video data, as it has more

information for object detection and localization even though there scale and

rotational variance. An essential component of robotics has to do with artificial

sensory systems in general and artificial vision in particular. While it is true that

robotics systems exist (including many successful industrial robots) that have

no sensory equipment (or very limited sensors) they tend to be very brittle

systems. They need to have their work area perfectly lit, with no shadows or

mess. They must have the parts needed in precisely the right position and

orientation, and if they are moved to a new location, they may require hours of

recalibration. If a system could be developed that could make sense out of a

visual scene it would greatly enhance the potential for robotics applications. It is

therefore not surprising that the study of robot vision and intelligent robotics go

hand-in-hand.

Introduction of OpenCV

OpenCV (Open Source Computer Vision Library) is a library of

programming functions mainly aimed at real-time computer vision, developed

by Intel, and now supported by Willow Garage and Itseez. OpenCV is released

under a BSD license and hence it’s free for both academic and commercial use.

It has C++, C, Python and Java interfaces and supports Windows, Linux, Mac

OS, iOS and Android. OpenCV was designed for computational efficiency and

with a strong focus on real-time applications. Written in optimized C/C++, the

library can take advantage of multi-core processing. You may download the

latest version such as OpenCV 2.4.7.

OpenCV’s built in modules are powerful and versatile enough to solve most of

your computer vision problems. OpenCV provides you with a set of modules that

can execute the functionalities listed in table 6. 1.

Tabel 6.1 Modules in OpenCV.

No Module Functionality

1 Core Core data structures, data type and memory management

2 ImgProc Image filtering, image transformation and shape analysis

3 Highgui GUI, reading and writing images and video

4 ML
Statistical models and classification algorithms for use in computer

vision applications

5 Objdetect Object detection using cascade and histogram of gradient classifiers

6 Video Motion analysis and object tracking in video

7 Calib3d Camera calibration and 3D Reconstruction from multiple views

http://en.wikipedia.org/wiki/Library_%28computing%29
http://en.wikipedia.org/wiki/Library_%28computing%29
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Intel_Corporation
http://en.wikipedia.org/wiki/Willow_Garage

Chapter 6 Introduction to OpenCV

http://www.sciencepublishinggroup.com 91

You need an editor and compiler of Visual Studio. Net 2010/2013 for editing

and compiling OpenCV program. You must first configure the Visual C + +.

Net where the library files and the source must be included. Some library files

must also be added to the linker input in Visual C + +. The steps are:

1) Run the program and extract to, let say f:/OpenCV246.

Figure 6.1 Extracting files to a folder.

2) Add these paths to your Path Variable:

f:\OpenCV246\opencv\build\x86\vc10\bin

f:\OpenCV246\opencv\build\common\tbb\ia32\vc10

3) Now we are ready to create a project with OpenCV. In Visual C++ 2010,

create a new Win32 console application called IntelligentRobotics. Now

right click the project and select Properties. On the left, choose C/C++ and

edit the Additional Include Directories. Add these directories:

f:\OpenCV246\opencv\build\include\opencv

f:\OpenCV246\opencv\build\include

Modern Robotics with OpenCV

92 http://www.sciencepublishinggroup.com

Figure 6.2 configuring additional include directories.

Chapter 6 Introduction to OpenCV

http://www.sciencepublishinggroup.com 93

4) Now choose Linker and add this directory to the Additional Library

Directories. You need to replace x86 with x64 if you want to build a 64

bit application.

f:\OpenCV246\opencv\build\x86\vc10\lib

5) Now open the Linker group (press the + sign before it) and select Input.

Add these lines to the Additional Dependencies:

opencv_core246d.lib

opencv_imgproc246d.lib

opencv_highgui246d.lib

opencv_ml246d.lib

opencv_video246d.lib

opencv_features2d246d.lib

opencv_calib3d246d.lib

opencv_objdetect246d.lib

opencv_contrib246d.lib

opencv_legacy246d.lib

opencv_flann246d.lib

Modern Robotics with OpenCV

94 http://www.sciencepublishinggroup.com

Figure 6.3 Configuring additional dependencies.

Chapter 6 Introduction to OpenCV

http://www.sciencepublishinggroup.com 95

For example, create a Win32 console application program to display an

image in Windows, the following example:

IntelligentRobotics.cpp

// Displaying image using cvLoadImage

#include "stdafx.h"

#include <cv.h>

#include <cxcore.h>

#include <highgui.h>

int _tmain(int argc, _TCHAR* argv[])

{

IplImage *img = cvLoadImage("f:\handsome.jpg");

cvNamedWindow("Intelligent Robotics with OpenCV",1);

cvShowImage("OpenCV",img);

cvWaitKey(0);

cvDestroyWindow("OpenCV ");

cvReleaseImage(&img);

return 0;

}

Modern Robotics with OpenCV

96 http://www.sciencepublishinggroup.com

Figure 6.4 Image displayed using OpenCV.

Or, if you like to use the 2.x C++ style, you can also use:

DisplayImage.cpp

// Displaying an image using 2.x C++ style

#include <iostream>

#include <stdio.h>

#include <opencv2/opencv.hpp>

#include <opencv2/highgui//highgui.hpp>

using namespace cv;

using namespace std;

int main(int argc, char** argv)

{

Chapter 6 Introduction to OpenCV

http://www.sciencepublishinggroup.com 97

// Creating an object img from Mat

cv::Mat img = cv::imread("f:\handsome.jpg");

cv::imshow("Modern Robotics with OpenCV",img);

cv::waitKey(); //wait user hit the keyboard

return EXIT_SUCCESS;

}

Digital Image Processing

An image is an array, or a matrix of square pixels arranged in columns and

rows format. A grayscale image is composed of pixels represented by multiple

bits of information, typically ranging from 2 to 8 bits or more. A color image is

typically represented by a bit depth ranging from 8 to 24 or higher. With a 24-

bit image, the bits are often divided into three groupings: 8 for red, 8 for green,

and 8 for blue. Combinations of those bits are used to represent other colors. A

24-bit image offers 16.7 million (2
24

) color values.

Figure 6.5 Grayscale image in 8 bit format (a), and truecolor image consist of 3

grayscale image red, green and blue.

To convert color image to grayscale, since red color has more wavelength of

all the three colors, and green is the color that has not only less wavelength then

red color but also green is the color that gives more soothing effect to the eyes.

It means that we have to decrease the contribution of red color, and increase the

contribution of the green color, and put blue color contribution in between these

two.

Modern Robotics with OpenCV

98 http://www.sciencepublishinggroup.com

So the new equation in that form is:

grayscale image = ((0.3 * R) + (0.59 * G) + (0.11 * B)).

According to this equation, Red has contributed 33%, Green has contributed

59% which is greater in all three colors and Blue has contributed 11%.

Figure 6.6 Color image (a) and grayscale image (b).

The purpose of image processing is divided into 5 groups. They are:

1) Visualization - Observe the objects that are not visible.

2) Image sharpening and restoration - To create a better image.

3) Image retrieval - Seek for the image of interest.

4) Measurement of pattern – Measures various objects in an image.

5) Image Recognition – Distinguish the objects in an image.

As an experiment to know the RGB process, create a new project and name

RGB, and create the program below:

RGB.cpp:

//Adding an RGB

#include "stdafx.h"

#include <stdio.h>

#include <cv.h>

#include <highgui.h>

void sum_rgb(IplImage* src, IplImage* dst) {

// Allocate individual image planes.

IplImage* r = cvCreateImage(cvGetSize(src),IPL_DEPTH_8U,1);

IplImage* g = cvCreateImage(cvGetSize(src),IPL_DEPTH_8U,1);

Chapter 6 Introduction to OpenCV

http://www.sciencepublishinggroup.com 99

IplImage* b = cvCreateImage(cvGetSize(src),IPL_DEPTH_8U,1);

// Temporary storage.

IplImage* s = cvCreateImage(cvGetSize(src),IPL_DEPTH_8U,1);

// Split image

cvSplit(src, r, g, b, NULL);

// Add equally weighted rgb values.

cvAddWeighted(r, 1./3., g, 1./3., 0.0, s);

cvAddWeighted(s, 2./3., b, 1./3., 0.0, s);

// Truncate the value above 100.

cvThreshold(s, dst, 150, 100, CV_THRESH_TRUNC);

cvReleaseImage(&r);

cvReleaseImage(&g);

cvReleaseImage(&b);

cvReleaseImage(&s);

}

int main(int argc, char** argv) {

// Buat jendela

cvNamedWindow(argv[1], 1);

// Load the image from the given file name.

IplImage* src = cvLoadImage(argv[1]);

IplImage* dst = cvCreateImage(cvGetSize(src), src->depth, 1);

sum_rgb(src, dst);

// show the window

cvShowImage(argv[1], dst);

// Idle until the user hits the "Esc" key.

while(1) { if((cvWaitKey(10)&0x7f) == 27) break; }

// clean the window

cvDestroyWindow(argv[1]);

cvReleaseImage(&src);

cvReleaseImage(&dst);

}

The result is an image that its RGB value has changed as shown below:

Modern Robotics with OpenCV

100 http://www.sciencepublishinggroup.com

Figure 6.7 Result of adding RGB value.

Edge Detection

Edge detection is a technique to locate the edges of objects in the scene. This

can be useful for locating the horizon, the corner of an object, white line

following, or for determing the shape of an object. The algorithm is quite simple:

 sort through the image matrix pixel by pixel;

 for each pixel, analyze each of the 8 pixels surrounding it;

 record the value of the darkest pixel, and the lightest pixel;

 if (darkest_pixel_value - lightest_pixel_value) > threshold);

 then rewrite that pixel as 1;

 else rewrite that pixel as 0.

The Canny Edge detector was developed by John F. Canny in 1986. Also

known to many as the optimal detector, Canny algorithm aims to satisfy three

main criteria:

Chapter 6 Introduction to OpenCV

http://www.sciencepublishinggroup.com 101

 Low error rate: Meaning a good detection of only existent edges.

 Good localization: The distance between edge pixels detected and real

edge pixels have to be minimized.

 Minimal response: Only one detector response per edge.

CannyEdgeDetector.cpp:

//Canny Edge Detector

#include "opencv2/imgproc/imgproc.hpp"

#include "opencv2/highgui/highgui.hpp"

#include <stdlib.h>

#include <stdio.h>

using namespace cv;

/// Global variables

Mat src, src_gray;

Mat dst, detected_edges;

int edgeThresh = 1;

int lowThreshold;

int const max_lowThreshold = 100;

int ratio = 3;

int kernel_size = 3;

char* window_name = "Canny Edge Detector";

void CannyThreshold(int, void*)

{

/// Reduce noise with a kernel 3x3

blur(src_gray, detected_edges, Size(3,3));

/// Canny detector

Canny(detected_edges, detected_edges, lowThreshold,

lowThreshold*ratio, kernel_size);

/// Using Canny's output as a mask, we display our result

dst = Scalar::all(0);

src.copyTo(dst, detected_edges);

imshow(window_name, dst);

}

Modern Robotics with OpenCV

102 http://www.sciencepublishinggroup.com

int main(int argc, char** argv)

{

/// Load an image

src = imread("lena.jpg");

if(!src.data)

{ return -1; }

/// Create a matrix of the same type and size as src (for dst)

dst.create(src.size(), src.type());

/// Convert the image to grayscale

cvtColor(src, src_gray, CV_BGR2GRAY);

/// Create a window

namedWindow(window_name, CV_WINDOW_AUTOSIZE);

/// Create a Trackbar for user to enter threshold

createTrackbar("Min Threshold:", window_name, &lowThreshold,

max_lowThreshold, CannyThreshold);

/// Show the image

CannyThreshold(0, 0);

/// Wait until user exit program by pressing a key

waitKey(0);

return 0;

}

Chapter 6 Introduction to OpenCV

http://www.sciencepublishinggroup.com 103

Figure 6.8 Edge detection using CANNY.

In image processing, to take the most important areas of an image, commonly

known as the ROI (region of interest), can use the following functions:

cvSetImageROI(src, cvRect(x,y,width,height));

ROI.cpp:

#include "stdafx.h"

#include <cv.h>

#include <highgui.h>

Modern Robotics with OpenCV

104 http://www.sciencepublishinggroup.com

int main(int argc, char** argv) {

IplImage* src;

cvNamedWindow("Contoh awal", CV_WINDOW_AUTOSIZE);

cvNamedWindow("Contoh akhir", CV_WINDOW_AUTOSIZE);

if(argc == 7 && ((src=cvLoadImage(argv[1],1)) != 0))

{

int x = atoi(argv[2]);

int y = atoi(argv[3]);

int width = atoi(argv[4]);

int height = atoi(argv[5]);

int add = atoi(argv[6]);

cvShowImage("Contoh awal", src);

cvSetImageROI(src, cvRect(x,y,width,height));

cvAddS(src, cvScalar(add),src);

cvResetImageROI(src);

cvShowImage("Contoh akhir",src);

cvWaitKey();

}

cvReleaseImage(&src);

cvDestroyWindow("Contoh awal");

cvDestroyWindow("Contoh akhir");

return 0;

}

Chapter 6 Introduction to OpenCV

http://www.sciencepublishinggroup.com 105

Figure 6.9 ROI of image.

Optical Flow

Optical flow or optic flow is the pattern of apparent motion of objects,

surfaces, and edges in a visual scene caused by the relative motion between an

observer (an eye or a camera) and the scene. calcOpticalFlowPyrLK calculates

an optical flow for a sparse feature set using the iterative Lucas-Kanade method

with pyramids.

OpticalFlow.cpp:

#include <opencv2/opencv.hpp>

#include <iostream>

#include <vector>

#include <cmath>

using namespace cv;

using namespace std;

int main(int argc, char** argv)

{

http://en.wikipedia.org/wiki/Motion_%28physics%29
http://en.wikipedia.org/wiki/Human_eye
http://en.wikipedia.org/wiki/Camera

Modern Robotics with OpenCV

106 http://www.sciencepublishinggroup.com

// Load 2 image

Mat imgA = imread("left02.jpg", CV_LOAD_IMAGE_GRAYSCALE);

Mat imgB = imread("left03.jpg", CV_LOAD_IMAGE_GRAYSCALE);

Size img_sz = imgA.size();

Mat imgC(img_sz,1);

int win_size = 15;

int maxCorners = 20;

double qualityLevel = 0.05;

double minDistance = 5.0;

int blockSize = 3;

double k = 0.04;

std::vector<cv::Point2f> cornersA;

cornersA.reserve(maxCorners);

std::vector<cv::Point2f> cornersB;

cornersB.reserve(maxCorners);

goodFeaturesToTrack(imgA,cornersA,maxCorners,qualityLevel,minD

istance,cv::Mat());

goodFeaturesToTrack(imgB,cornersB,maxCorners,qualityLevel,minD

istance,cv::Mat());

cornerSubPix(imgA, cornersA, Size(win_size, win_size),

Size(-1, -1),

TermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, 0.03));

cornerSubPix(imgB, cornersB, Size(win_size, win_size),

Size(-1, -1),

TermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, 0.03));

// Call Lucas Kanade algorithm

CvSize pyr_sz = Size(img_sz.width+8, img_sz.height/3);

std::vector<uchar> features_found;

features_found.reserve(maxCorners);

std::vector<float> feature_errors;

feature_errors.reserve(maxCorners);

calcOpticalFlowPyrLK(imgA, imgB, cornersA, cornersB,

features_found, feature_errors ,

Size(win_size, win_size), 5,

Chapter 6 Introduction to OpenCV

http://www.sciencepublishinggroup.com 107

cvTermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, 0.3),

0);

// Make an image of the results

for(int i=0; i < features_found.size(); i++){

cout<<"Error is "<<feature_errors[i]<<endl;

//continue;

cout<<"Got it"<<endl;

Point p0(ceil(cornersA[i].x), ceil(cornersA[i].y));

Point p1(ceil(cornersB[i].x), ceil(cornersB[i].y));

line(imgC, p0, p1, CV_RGB(255,255,255), 2);

}

namedWindow("ImageA", 0);

namedWindow("ImageB", 0);

namedWindow("LKpyr_OpticalFlow", 0);

imshow("ImageA", imgA);

imshow("ImageB", imgB);

imshow("LKpyr_OpticalFlow", imgC);

cvWaitKey(0);

return 0;

}

(a) (b) (c)

Figure 6.10 Result of optical flow program from 2 images.

Modern Robotics with OpenCV

108 http://www.sciencepublishinggroup.com

References

[1] Gary Bradski & Adrian Kaehler, Learning OpenCV (2008), O’Reilly Publisher.

[2] Robert Laganiere, OpenCV 2 Computer Vision Application Programming

Cookbook, 2011.

[3] Richard Szeliski, Computer Vision: Algorithms and Applications, 2010.

[4] Budiharto W., Santoso A., Purwanto D., Jazidie A., A Navigation System for

Service robot using Stereo Vision, 11th International conference on Control,

Automation and Systems, Kyntext-Korea, pp 101-107, 2011.

http://www.amazon.com/OpenCV-Computer-Application-Programming-Cookbook/dp/1849513244/ref=sr_1_2?ie=UTF8&qid=1333891360&sr=8-2
http://www.amazon.com/OpenCV-Computer-Application-Programming-Cookbook/dp/1849513244/ref=sr_1_2?ie=UTF8&qid=1333891360&sr=8-2

Chapter 7

Programming OpenCV

http://www.sciencepublishinggroup.com 111

On successful completion of this course, students will be able to:

 Explain the morphological filtering.

 Explain MeanShift and CamShift algorithms.

 Develop a program to tracking an object using MeanShift() and

CamShift().

Introduction

Morphological filtering is a theory developed in the 1960s for the analysis

and processing of discrete images. It defines a series of operators which

transform an image by probing it with a predefined shape element. The way this

shape element intersects the neighborhood of a pixel determines the result of the

operation. Tracking an object is important features for intelligent robotics.

Meansift is an algorithm that finds an object in a backprjected histograma image.

Camshift is a histogram backprojection-based object tracking algorithm that

uses meanshift at its heart. It takes the detection window output by meanshift

and figures out the best size and rotation of that window to track the object.

Morphological Filtering

As morphological filters usually work on binary images, we will use a binary

image produced through thresholding. However, since in morphology, the

convention is to have foreground objects represented by high (white) pixel

values and background by low (black) pixel values, we have negated the image.

Morphological operations are a set of operations that process images based on

shapes. Morphological operations apply a structuring element to an input image

and generate an output image. The most basic morphological operations are two:

Erosion and Dilation. They have a wide array of uses, i.e.:

 Removing noise.

 Isolation of individual elements and joining disparate elements in an image.

 Finding of intensity bumps or holes in an image.

Erosion and dilation are implemented in OpenCV as simple functions which

are cv::erode and cv::dilate. The opening and closing filters are simply defined

Modern Robotics with OpenCV

112 http://www.sciencepublishinggroup.com

in terms of the basic erosion and dilation operations. Closing is defined as the

erosion of the dilation of an image, and Opening is defined as the dilation of the

erosion of an image. The code below show an example of erotion and dilation:

Morphology.cpp:

#include "opencv2/imgproc/imgproc.hpp"

#include "opencv2/highgui/highgui.hpp"

#include "highgui.h"

#include <stdlib.h>

#include <stdio.h>

using namespace cv;

/// Global variables

Mat src, erosion_dst, dilation_dst;

int erosion_elem = 0;

int erosion_size = 0;

int dilation_elem = 0;

int dilation_size = 0;

int const max_elem = 2;

int const max_kernel_size = 21;

/** Function Headers */

void Erosion(int, void*);

void Dilation(int, void*);

int main(int argc, char** argv)

{

/// Load an image

// src = imread(argv[1]); // if using command prompt

src = imread("flower.jpg");

if(!src.data)

{ return -1; }

/// Create windows

namedWindow("Erosion Demo", CV_WINDOW_AUTOSIZE);

namedWindow("Dilation Demo", CV_WINDOW_AUTOSIZE);

cvMoveWindow("Dilation Demo", src.cols, 0);

Chapter 7 Programming OpenCV

http://www.sciencepublishinggroup.com 113

/// Create Erosion Trackbar

createTrackbar("Element:\n 0: Rect \n 1: Cross \n 2: Ellipse",

"Erosion Demo",

&erosion_elem, max_elem,

Erosion);

createTrackbar("Kernel size:\n 2n +1", "Erosion Demo",

&erosion_size, max_kernel_size,

Erosion);

/// Create Dilation Trackbar

createTrackbar("Element:\n 0: Rect \n 1: Cross \n 2: Ellipse",

"Dilation Demo",

&dilation_elem, max_elem,

Dilation);

createTrackbar("Kernel size:\n 2n +1", "Dilation Demo",

&dilation_size, max_kernel_size,

Dilation);

/// Default start

Erosion(0, 0);

Dilation(0, 0);

waitKey(0);

return 0;

}

void Erosion(int, void*)

{

int erosion_type;

if(erosion_elem == 0){ erosion_type = MORPH_RECT; }

else if(erosion_elem == 1){ erosion_type = MORPH_CROSS; }

else if(erosion_elem == 2) { erosion_type = MORPH_ELLIPSE; }

Mat element = getStructuringElement(erosion_type,

Size(2*erosion_size + 1, 2*erosion_size+1),

Point(erosion_size, erosion_size));

/// Apply the erosion operation

erode(src, erosion_dst, element);

Modern Robotics with OpenCV

114 http://www.sciencepublishinggroup.com

imshow("Erosion Demo", erosion_dst);

}

void Dilation(int, void*)

{

int dilation_type;

if(dilation_elem == 0){ dilation_type = MORPH_RECT; }

else if(dilation_elem == 1){ dilation_type = MORPH_CROSS; }

else if(dilation_elem == 2) { dilation_type = MORPH_ELLIPSE; }

Mat element = getStructuringElement(dilation_type,

Size(2*dilation_size + 1, 2*dilation_size+1),

Point(dilation_size, dilation_size));

/// Apply the dilation operation

dilate(src, dilation_dst, element);

imshow("Dilation Demo", dilation_dst);

}

Figure 7.1 result of erotion and dilation.

Chapter 7 Programming OpenCV

http://www.sciencepublishinggroup.com 115

Camshift for Tracking Object

Meansift is an algorithm that finds an object in a backprjected histogram

image. Camshift is a histogram backprojection-based object tracking algorithm

that uses meanshift at its heart. It takes the detection window output by

meanshift and figures out the best size and rotation of that window to track the

object. OpenCV fuctions meanShift() and CamShift() implement these

algorithm.

Camshift.cpp:

#include "stdafx.h"

#include "opencv2/video/tracking.hpp"

#include "opencv2/imgproc/imgproc.hpp"

#include "opencv2/highgui/highgui.hpp"

#include <iostream>

#include <ctype.h>

using namespace cv;

using namespace std;

Mat image;

bool backprojMode = false;

bool selectObject = false;

int trackObject = 0;

bool showHist = true;

Point origin;

Rect selection;

int vmin = 10, vmax = 256, smin = 30;

static void onMouse(int event, int x, int y, int, void*)

{

if(selectObject)

{

selection.x = MIN(x, origin.x);

selection.y = MIN(y, origin.y);

selection.width = std::abs(x - origin.x);

selection.height = std::abs(y - origin.y);

Modern Robotics with OpenCV

116 http://www.sciencepublishinggroup.com

selection &= Rect(0, 0, image.cols, image.rows);

}

switch(event)

{

case CV_EVENT_LBUTTONDOWN:

origin = Point(x,y);

selection = Rect(x,y,0,0);

selectObject = true;

break;

case CV_EVENT_LBUTTONUP:

selectObject = false;

if(selection.width > 0 && selection.height > 0)

trackObject = -1;

break;

}

}

const char* keys =

{

"{1| | 0 | camera number}"

};

int main(int argc, const char** argv)

{

VideoCapture cap;

Rect trackWindow;

int hsize = 16;

float hranges[] = {0,180};

const float* phranges = hranges;

CommandLineParser parser(argc, argv, keys);

int camNum = parser.get<int>("1");

cap.open(camNum);

IplImage img = image;

if(!cap.isOpened())

{

Chapter 7 Programming OpenCV

http://www.sciencepublishinggroup.com 117

cout << "***Could not initialize capturing...***\n";

parser.printParams();

return -1;

}

namedWindow("Histogram", 0);

namedWindow("VISION-BASED GRASPING FOR ARM ROBOT", 0);

setMouseCallback("VISION-BASED GRASPING FOR ARM ROBOT",

onMouse, 0);

createTrackbar("Vmin", "VISION-BASED GRASPING FOR ARM ROBOT",

&vmin, 256, 0);

createTrackbar("Vmax", "VISION-BASED GRASPING FOR ARM ROBOT",

&vmax, 256, 0);

createTrackbar("Smin", "VISION-BASED GRASPING FOR ARM ROBOT",

&smin, 256, 0);

Mat frame, hsv, hue, mask, hist, histimg = Mat::zeros(200, 320,

CV_8UC3), backproj;

bool paused = false;

for(;;)

{

if(!paused)

{

cap >> frame;

if(frame.empty())

break;

}

frame.copyTo(image);

if(!paused)

{

cvtColor(image, hsv, CV_BGR2HSV);

if(trackObject)

{

int _vmin = vmin, _vmax = vmax;

inRange(hsv, Scalar(0, smin, MIN(_vmin,_vmax)),

Scalar(180, 256, MAX(_vmin, _vmax)), mask);

int ch[] = {0, 0};

Modern Robotics with OpenCV

118 http://www.sciencepublishinggroup.com

hue.create(hsv.size(), hsv.depth());

mixChannels(&hsv, 1, &hue, 1, ch, 1);

if(trackObject < 0)

{

Mat roi(hue, selection), maskroi(mask, selection);

calcHist(&roi, 1, 0, maskroi, hist, 1, &hsize, &phranges);

normalize(hist, hist, 0, 255, CV_MINMAX);

trackWindow = selection;

trackObject = 1;

histimg = Scalar::all(0);

int binW = histimg.cols / hsize;

Mat buf(1, hsize, CV_8UC3);

for(int i = 0; i < hsize; i++)

buf.at<Vec3b>(i) =

Vec3b(saturate_cast<uchar>(i*180./hsize), 255, 255);

cvtColor(buf, buf, CV_HSV2BGR);

for(int i = 0; i < hsize; i++)

{

int val =

saturate_cast<int>(hist.at<float>(i)*histimg.rows/255);

rectangle(histimg, Point(i*binW,histimg.rows),

Point((i+1)*binW,histimg.rows - val),

Scalar(buf.at<Vec3b>(i)), -1, 8);

}

}

calcBackProject(&hue, 1, 0, hist, backproj, &phranges);

backproj &= mask;

RotatedRect trackBox = CamShift(backproj, trackWindow,

TermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10,

1));

if(trackWindow.area() <= 1)

{

int cols = backproj.cols, rows = backproj.rows, r =

(MIN(cols, rows) + 5)/6;

trackWindow = Rect(trackWindow.x - r, trackWindow.y - r,

Chapter 7 Programming OpenCV

http://www.sciencepublishinggroup.com 119

trackWindow.x + r, trackWindow.y + r) &

Rect(0, 0, cols, rows);

}

if(backprojMode)

cvtColor(backproj, image, CV_GRAY2BGR);

ellipse(image, trackBox, Scalar(0,0,255), 3, CV_AA);

// cvRectangle

(&image,cvPoint(trackBox.center),cvPoint(trackBox.center),CV_RGB(

255,0,0), 3);

//cvRectangle(&frame,

cvPoint(trackWindow.x,trackWindow.y),cvPoint(trackWindow.x+20,tra

ckWindow.y+20), CV_RGB(255,0,0), 3);

}

}

else if(trackObject < 0)

paused = false;

if(selectObject && selection.width > 0 && selection.height >

0)

{

Mat roi(image, selection);

bitwise_not(roi, roi);

}

imshow("VISION-BASED GRASPING FOR ARM ROBOT", image);

imshow("Histogram", histimg);

char c = (char)waitKey(10);

if(c == 27)

break;

switch(c)

{

case 'b':

backprojMode = !backprojMode;

break;

case 'c':

trackObject = 0;

histimg = Scalar::all(0);

Modern Robotics with OpenCV

120 http://www.sciencepublishinggroup.com

break;

case 'h':

showHist = !showHist;

if(!showHist)

destroyWindow("Histogram");

else

namedWindow("Histogram", 1);

break;

case 'p':

paused = !paused;

break;

default:

;

}

}

return 0;

}

Chapter 7 Programming OpenCV

http://www.sciencepublishinggroup.com 121

Figure 7.2 Result of object detection.

Modern Robotics with OpenCV

122 http://www.sciencepublishinggroup.com

References

[1] Adrian Kaehler & Garry Bradksy, Learning OpenCV: Computer Vision in C++

with the OpenCV Library, O'Reilly PUblisher, 2014.

[2] Samarth Brahmbatt, Practical OpenCV, Technology in Action Publisher, 2013.

[3] Daniel bagio et al., Mastering OpenCV with Practical Computer Vision

Project, Packt Publisher, 2012.

Chapter 8

Extracting the Component’s Contours

for Calculating Number of Objects

http://www.sciencepublishinggroup.com 125

On successful completion of this course, students will be able to:

 Explain how to extract component’s contours.

 Develop a program to count an object in image.

Introduction

Image processing for obtaining object‘s information in an image is important

part in digital era. Important images generally contain representation of specific

objects. In order to perform a content-based analysis of an image, it is necessary

to extract meaningful features from the collection of pixels and contours that

constitute the image. Contours are fundamental image elements that define an

image’s content. In this paper, we propose a method for calculating number of

objects using computer vision based on contours and shape descriptor of image.

Introduction of Contours

Images generally contain representation of objects. One of the goals of image

analysis is to identify and extract those objects. In object detection/recognition

applications, the first step is to produce a binary image showing where certain

objects of interest could be located. The next step is to then extract the objects

which are contain in this collection of 1s and 0s. More specifically, we will

extract the connected components, that is, shapes made of a set of connected

pixels in a binary image. In this paper, we propose a method for calculating

objects in an image using contour and shape descriptor. The implementation of

this method is such as to get information about traffic density, how many cars in

a street.

The contours are extracted by a simple algorithm that consists of

systematically scanning the image until a component is hit. From this starting

point of the component, its contour is followed, marking the pixels on its border.

When the contour is completed, the scanning resumes at the last position until a

new component is found. The identified connected components can then be

individually analyzed. Implementation of image segmentation for extracting

foreground object can be use GraphCut algorithm based on mathematical

morphology [3]. GrabCut is computationally more expensive than watershed,

but it generally produces a more accurate result. It is the best algorithm to use

Modern Robotics with OpenCV

126 http://www.sciencepublishinggroup.com

when one wants to extract a foreground object in a still image. So for this

research, we propose simple mechanism for calculating the objects in an image,

by processing the contour and the shape descriptor of an image using connected

component.

Shape descriptors are important tools in content-based image retrieval

systems, which allow searching and browsing images in a database with respect

to the shape information. The shape description methods can be divided into

three main categories; contour based, image based and skeleton based

descriptors [5]. A Connected component often corresponds to the image of

some object in a pictured scene. To identify this object, or to compare it with

other image elements, it can be useful to perform some measurements on the

component in order to extract some of its characteristics. Many OpenCV
functions are available when it comes to shape descriptor and offers a simple

function which extracts the contours of the connected components of an image

using cv::findContours function.

Cv::findCounteours (image,

CV_RETR_EXTERNAL, //retrieve the external contours

CV_CHAIN_APROX_NONE); // all pixels of each contours.

For example, if some prior knowledge is available about the expected size of

objects of interest, it becomes possible to eliminate some of the components.

Let’s then use a minimum and a maximum value for the perimeter of the

components by iterating over the vector of contours and eliminating the

eliminating the invalid components. The implementation for finding contours

shown in the program below:

// Eliminate too short or too long contours

intcmin=100;int cmax=1000 //min and max contour length

std::vector<std::vector<cv::Point>>::

const_iteratoritc=contours.begin();

while (itc !=contours.end()) {

if (itc->size()<cmin ||itc->size() >cmax)

itc=contour//Eliminate.erase(itc);

else

++itc;

}

Chapter 8 Extracting the Component’s Contours for Calculating Number of Objects

http://www.sciencepublishinggroup.com 127

Counting Objects

We using singe images for the experiment, and convert it first to binary, then

we extract the contour, shape descriptor, counting and displaying number of

objects. The algorithm for extract the contours shown below:

Algorithm 8.1. Extracting the contour and counting the object:

Begin

Counter=0

reading image and convert to binary image

Extract contours

Output the vector of contours

Counting the objects

Couter+=1

Displaying the number of object

End

The diagram block of our method shown in figure 8.1:

Figure 8.1 Diagram block of the system for calculating number of objects.

We test an example image with 4 animal and size 400x600 pixel as shown in

figure 8.2:

Modern Robotics with OpenCV

128 http://www.sciencepublishinggroup.com

Figure 8.2 Testing image.

Then the result of binary image from fig. 8.2 shown in figure 8.3:

Figure 8.3 Binary image.

After that, we find contours of image as shown in figure 8.4:

Chapter 8 Extracting the Component’s Contours for Calculating Number of Objects

http://www.sciencepublishinggroup.com 129

Figure 8.4 Contour of image obtained.

After that, we got total number of object with its shape descriptors as shown

in figure 8.5, using function:

CvPoint pt1;

pt1.x=100;pt1.y=60;

cvInitFont(&font, CV_FONT_HERSHEY_COMPLEX, 0.5, 0.5,

0.0, 1, CV_AA);

cvPutText(img, "TOTAL :", varCount, &font ,

CV_RGB(0,0,255));

Modern Robotics with OpenCV

130 http://www.sciencepublishinggroup.com

Figure 8.5 Number of objects obtained with processing time less than 1 second.

References

[1] Robert Laganière, OpenCV 2 Computer Vision Application Programming

Cookbook, Apress Publisher, 2011.

[2] R.C. Gonzalez, Digital Image Processing (3
rd

 ed.), Addison Wesley, 2007.

[3] Rother, A Blake, GrabCut: Interactive Foreground Extraction using Iterated Graph

Cuts, ACM Transaction on Graphics, vol. 23 no. 3, 2004.

[4] R. Szeliski, Computer Vision, Algorithms and Applications, Springer Publisher,

2011.

[5] Latecki, L. J., Lakamper, R., Shape Similarity Measure Based on Correspondence

of Visual Parts.IEEE Transaction. PAMI, 22, 10, pp.1185-1190, 2000.

Chapter 9

Face Recognition Systems

http://www.sciencepublishinggroup.com 133

On successful completion of this course, students will be able to:

 Explain how to detect face in OpenCV.

 Develop face recognition systems using library in OpenCV.

Introduction

The face is our primary focus of attention in developing an iintelligent robot

to serves peoples. Unfortunatelly, developing a computational model of face

recognition is quite difficult, because faces are complex, meaningful visual

stimuli and multidimensional. Modelling of face images can be based on

statistical model such as Principal Component Analysis (PCA) and Linear

Discriminant analysis (LDA)and physical modelling based on the assumption of

certain surface reflectance properties, such as Lambertian surface. OpenCV

provides functions for face detector using Paul Viola and Michael Jones method,

and OpenCV facetracker using Camshift algorithm.

Face Recognition in OpenCV

Face recognition is an easy task for humans, but not for computer systems.

All face recognition models in OpenCV 2.4 are derived from the abstract base

class FaceRecognizer, which provides a unified access to all face recongition

algorithms in OpenCV. The currently available algorithms are:

 Eigenfaces (see createEigenFaceRecognizer())

 Fisherfaces (see createFisherFaceRecognizer())

 Local Binary Patterns Histograms (see createLBPHFaceRecognizer())

Experiments in [16] have shown, that even one to three day old babies are

able to distinguish between known faces. So how hard could it be for a

computer? It turns out we know little about human recognition to date. Are

inner features (eyes, nose, mouth) or outer features (head shape, hairline) used

for a successful face recognition? How do we analyze an image and how does

the brain encode it? It was shown by David Hubel and Torsten Wiesel, that our

brain has specialized nerve cells responding to specific local features of a scene,

such as lines, edges, angles or movement. Since we don’t see the world as

scattered pieces, our visual cortex must somehow combine the different sources

http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_api.html#Ptr%3CFaceRecognizer%3E%20createEigenFaceRecognizer%28int%20num_components%20,%20double%20threshold%29
http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_api.html#Ptr%3CFaceRecognizer%3E%20createFisherFaceRecognizer%28int%20num_components%20,%20double%20threshold%29
http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_api.html#Ptr%3CFaceRecognizer%3E%20createLBPHFaceRecognizer%28int%20radius,%20int%20neighbors,%20int%20grid_x,%20int%20grid_y,%20double%20threshold%29
http://en.wikipedia.org/wiki/David_H._Hubel
http://en.wikipedia.org/wiki/Torsten_Wiesel

Modern Robotics with OpenCV

134 http://www.sciencepublishinggroup.com

of information into useful patterns. Automatic face recognition is all about

extracting those meaningful features from an image, putting them into a useful

representation and performing some kind of classification on them.

Face recognition based on the geometric features of a face is probably the

most intuitive approach to face recognition. One of the first automated face

recognition systems was described by Kanade in 1973, marker points (position

of eyes, ears and nose) were used to build a feature vector (distance between

the points, angle between them). The recognition was performed by calculating

the euclidean distance between feature vectors of a probe and reference image.

The Eigenfaces method described in [15] took a holistic approach to face

recognition: A facial image is a point from a high-dimensional image space and

a lower-dimensional representation is found, where classification becomes easy.

The lower-dimensional subspace is found with Principal Component Analysis,

which identifies the axes with maximum variance. While this kind of

transformation is optimal from a reconstruction standpoint, it doesn’t take any

class labels into account. Imagine a situation where the variance is generated

from external sources, let it be light. The axes with maximum variance do not

necessarily contain any discriminative information at all, hence a classification

becomes impossible. So a class-specific projection with a Linear Discriminant

Analysis was applied to face recognition in [17]. The basic idea is to minimize

the variance within a class, while maximizing the variance between the classes

at the same time.

Recently various methods for a local feature extraction emerged. To avoid the

high-dimensionality of the input data only local regions of an image are

described, the extracted features are (hopefully) more robust against partial

occlusion, illumation and small sample size. Algorithms used for a local feature

extraction are Gabor Wavelets [18], Discrete Cosinus Transform [19] and Local

Binary Patterns [20]. It’s still an open research question what’s the best way to

preserve spatial information when applying a local feature extraction, because

spatial information is potentially useful information.

The problem with the image representation we are given is its high

dimensionality. The Principal Component Analysis (PCA), which is the core of

the Eigenfaces method, finds a linear combination of features that maximizes

the total variance in data. While this is clearly a powerful way to represent data,

it doesn’t consider any classes and so a lot of discriminative information may be

lost when throwing components away. Imagine a situation where the variance in

your data is generated by an external source, let it be the light. The components

http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_tutorial.html#tp91
http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_tutorial.html#bhk97
http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_tutorial.html#wiskott97
http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_tutorial.html#messer06
http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_tutorial.html#ahp04

Chapter 9 Face Recognition Systems

http://www.sciencepublishinggroup.com 135

identified by a PCA do not necessarily contain any discriminative information

at all, so the projected samples are smeared together and a classification

becomes impossible.

The Linear Discriminant Analysis performs a class-specific dimensionality

reduction and was invented by the great statistician Sir R. A. Fisher. In order to

find the combination of features that separates best between classes the Linear

Discriminant Analysis maximizes the ratio of between-classes to within-classes

scatter, instead of maximizing the overall scatter. The idea is simple: same

classes should cluster tightly together, while different classes are as far away as

possible from each other in the lower-dimensional representation. This was also

recognized by Belhumeur, Hespanha and Kriegman and so they applied a

Discriminant Analysis to face recognition [22].

Haar Cascade Classifier

Viola-Jones framework has been widely used by researchers in order to

detect the location of faces and objects in a given image. Face detection

classifiers are shared by public communities, such as OpenCV [1]. Haar

Cascade Classifier use AdaBoost at every node in cascade to study high

detection level with multi-tree classifier rejection level at every node in cascade.

This algorithm combines some innovative features, such as:

1) Use haar-like input feature, threshold that is used to sum and differentiate

square regions from image.

2) Integral image technique that enable fast computation for square regions

or regions that is rotated 45 degree. This data structure is used to make

computation from Haar-like input feature faster.

3) Statistical Boosting to make binary node classification (yes/no) that

characterized with high detection level and weak rejection level.

4) Organizing weak classifier nodes from a rejection cascade. In other words,

first group from the classifiers is selected so best detection in image

region consist of an object although enabling many mistakes in detection;

the next classifier groups are the second best detection with weak level

rejection; and so on. In testing, an object can be known if that object

makes it through all cascades [2]. Haar-like input feature that are used by

classifier are:

http://en.wikipedia.org/wiki/Ronald_Fisher
http://www.cs.columbia.edu/~belhumeur/
http://www.ece.ucsb.edu/~hespanha/
http://cseweb.ucsd.edu/~kriegman/

Modern Robotics with OpenCV

136 http://www.sciencepublishinggroup.com

Figure 9.1 Haar-like input feature that are used by classifiers [2].

You have to inform to classifier, the directory to be used, such as

haarcascade_frontalface_default.xml. At OpenCV, stored on:

Program_Files/OpenCV/data/haarcasades/haarcascade_frontalface_d

efault.xml.

To running the detector for face and eyes, you have to call detectMultiScale()

that consist of 7 parameter:

//-- Detect faces

face_cascade.detectMultiScale (frame_gray, faces, 1.1, 2, 0,

Size(80, 80));

for(int i = 0; i < faces.size(); i++)

{

Mat faceROI = frame_gray (faces[i]);

std::vector<Rect> eyes;

//-- In each face, detect eyes

eyes_cascade.detectMultiScale (faceROI, eyes, 1.1, 2, 0

|CV_HAAR_SCALE_IMAGE, Size(30, 30));

Program below show the demo to detect face and eyes using webcam:

Chapter 9 Face Recognition Systems

http://www.sciencepublishinggroup.com 137

HaarDetection.cpp

//Face and eyes detection using Haar Cascade Classifier

#include "opencv2/objdetect/objdetect.hpp"

#include "opencv2/highgui/highgui.hpp"

#include "opencv2/imgproc/imgproc.hpp"

#include <iostream>

using namespace std;

using namespace cv;

/** Function Headers */

void detectAndDisplay(Mat frame);

/** Global variables */

String face_cascade_name = "lbpcascade_frontalface.xml";

String eyes_cascade_name =

"haarcascade_eye_tree_eyeglasses.xml";

CascadeClassifier face_cascade;

CascadeClassifier eyes_cascade;

string window_name = "Face detection";

int main(int argc, const char** argv)

{

CvCapture* capture;

Mat frame;

//-- 1. Load the cascade

if(!face_cascade.load(face_cascade_name)){ printf("--

(!)Error loading face\n"); return -1; };

if(!eyes_cascade.load(eyes_cascade_name)){ printf("--

(!)Error loading eye\n"); return -1; };

//-- 2. Read the video stream

capture = cvCaptureFromCAM(0);

if(capture)

{

while(true)

{

frame = cvQueryFrame(capture);

//-- 3. Apply the classifier to the frame

Modern Robotics with OpenCV

138 http://www.sciencepublishinggroup.com

if(!frame.empty())

{ detectAndDisplay(frame); }

else

{ printf(" --(!) No captured frame -- Break!"); break; }

int c = waitKey(10);

if((char)c == 'c') { break; }

}

}

return 0;

}

/**

* @function detectAndDisplay

*/

void detectAndDisplay(Mat frame)

{

std::vector<Rect> faces;

Mat frame_gray;

cvtColor(frame, frame_gray, CV_BGR2GRAY);

equalizeHist(frame_gray, frame_gray);

//-- Detect faces

face_cascade.detectMultiScale(frame_gray, faces, 1.1, 2, 0,

Size(80, 80));

for(int i = 0; i < faces.size(); i++)

{

Mat faceROI = frame_gray(faces[i]);

std::vector<Rect> eyes;

//-- In each face, detect eyes

eyes_cascade.detectMultiScale(faceROI, eyes, 1.1, 2, 0

|CV_HAAR_SCALE_IMAGE, Size(30, 30));

if(eyes.size() == 2)

{

//-- Draw the face

Point center(faces[i].x + faces[i].width*0.5, faces[i].y +

faces[i].height*0.5);

Chapter 9 Face Recognition Systems

http://www.sciencepublishinggroup.com 139

ellipse(frame, center, Size(faces[i].width*0.5,

faces[i].height*0.5), 0, 0, 360, Scalar(255, 0, 0), 2, 8, 0);

for(int j = 0; j < eyes.size(); j++)

{ //-- Draw the eyes

Point center(faces[i].x + eyes[j].x + eyes[j].width*0.5,

faces[i].y + eyes[j].y + eyes[j].height*0.5);

int radius = cvRound((eyes[j].width +

eyes[j].height)*0.25);

circle(frame, center, radius, Scalar(255, 0, 255), 3, 8,

0);

}

}

}

//-- Show the result

imshow(window_name, frame);

}

The result of the program show in figure 9.2:

Figure 9.2 Result of face detection using Haar classifier.

Modern Robotics with OpenCV

140 http://www.sciencepublishinggroup.com

Displaying face detected from webcam with ellipse and rectangle usually

need by robotics engineer, because it can be used to measure distance between

camera and the object, the rectangle codes:

cvCircle(img, center, radius, color, 3, 8, 0);

cvRectangle(img,cvPoint(r->x, r->y),cvPoint(r->x + r-

>width, r->y + r->height),CV_RGB(0, 255, 0), 1, 8, 0);

Program below show an example for face detection with rectangle:

Figure 9.3 Face detected using rectangle.

FaceRectangle.cpp:

//Face Detection using Rectangle

#include "stdafx.h"

#include "opencv2/objdetect/objdetect.hpp"

#include "opencv2/highgui/highgui.hpp"

#include "opencv2/imgproc/imgproc.hpp"

#include <iostream>

#include "cv.h"

Chapter 9 Face Recognition Systems

http://www.sciencepublishinggroup.com 141

#include "highgui.h"

#include <iostream>

#include <cstdio>

#ifdef _EiC

#define WIN32

#endif

using namespace std;

using namespace cv;

void detectAndDraw(Mat& img,

CascadeClassifier& cascade, CascadeClassifier&

nestedCascade,

double scale);

String cascadeName ="haarcascade_frontalface_alt.xml";

int main(int argc, const char** argv)

{

CvCapture* capture = 0;

Mat frame, frameCopy, image;

const String scaleOpt = "--scale=";

size_t scaleOptLen = scaleOpt.length();

const String cascadeOpt = "--cascade=";

size_t cascadeOptLen = cascadeOpt.length();

String inputName;

CascadeClassifier cascade, nestedCascade;

double scale = 1;

if(!cascade.load(cascadeName))

{

cerr << "ERROR: Could not load classifier cascade" << endl;

cerr << "Usage: facedetect [--cascade=\"<cascade_path>\"]\n"

" [--nested-cascade[=\"nested_cascade_path\"]]\n"

" [--scale[=<image scale>\n"

" [filename|camera_index]\n" ;

return -1;

}

Modern Robotics with OpenCV

142 http://www.sciencepublishinggroup.com

capture = cvCaptureFromCAM(0);

cvNamedWindow("Face Detection with Rectangle", 1);

if(capture)

{

for(;;)

{

IplImage* iplImg = cvQueryFrame(capture);

frame = iplImg;

if(frame.empty())

break;

if(iplImg->origin == IPL_ORIGIN_TL)

frame.copyTo(frameCopy);

else

flip(frame, frameCopy, 0);

detectAndDraw(frameCopy, cascade, nestedCascade, scale);

if(waitKey(10) >= 0)

goto _cleanup_;

}

waitKey(0);

cleanup:

cvReleaseCapture(&capture);

}

cvDestroyWindow("result");

return 0;

}

void detectAndDraw(Mat& img,

CascadeClassifier& cascade, CascadeClassifier&

nestedCascade,

double scale)

{

int i = 0;

double t = 0;

vector<Rect> faces;

Chapter 9 Face Recognition Systems

http://www.sciencepublishinggroup.com 143

const static Scalar colors[] = { CV_RGB(100,0,255),

CV_RGB(0,100,255),

CV_RGB(0,255,255),

CV_RGB(0,255,0),

CV_RGB(255,128,0),

CV_RGB(255,255,0),

CV_RGB(255,0,0),

CV_RGB(255,0,255)} ;

Mat gray, smallImg(cvRound (img.rows/scale),

cvRound(img.cols/scale), CV_8UC1);

cvtColor(img, gray, CV_BGR2GRAY);

resize(gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR);

equalizeHist(smallImg, smallImg);

t = (double)cvGetTickCount();

cascade.detectMultiScale(smallImg, faces,

1.1, 2, 0

//|CV_HAAR_FIND_BIGGEST_OBJECT

//|CV_HAAR_DO_ROUGH_SEARCH

|CV_HAAR_SCALE_IMAGE

,

Size(30, 30));

t = (double)cvGetTickCount() - t;

printf("detection time = %g ms\n",

t/((double)cvGetTickFrequency()*1000.));

for(vector<Rect>::const_iterator r = faces.begin(); r !=

faces.end(); r++, i++)

{

Mat smallImgROI;

vector<Rect> nestedObjects;

Point center;

Scalar color = colors[i%8];

int radius;

center.x = cvRound((r->x + r->width*0.5)*scale);

center.y = cvRound((r->y + r->height*0.5)*scale);

radius = cvRound((r->width + r->height)*0.25*scale);

circle(img, center, radius, color, 3, 8, 0);

Modern Robotics with OpenCV

144 http://www.sciencepublishinggroup.com

cv::rectangle(img,cvPoint(r->x, r->y),cvPoint(r->x +

r->width, r->y + r->height),CV_RGB(255, 0, 0), 1, 8, 0);

}

cv::imshow("Face Detection with Rectangle", img);

}

Face Features Detector

Face features detector such as eye, nose and mouth very important for

intelligent robotics. Robot should be able to recognize the expression (angry,

sad, happy etc) obtained from a face in front of robot. An example below show

face detected with eye, nose and mouth using libraries:

 haarcascade_frontalface_alt2.xml

 haarcascade_mcs_eyepair_big.xml

 haarcascad_mcs_nose.xml

 haarcascade_mcs_mouth.xml

 haarcascade_smile.xml

FacialFeatures.cpp:

#include <stdio.h>

#include<conio.h>

#include "cv.h"

#include "highgui.h"

#include "cvaux.h"

CvHaarClassifierCascade

*cascade,*cascade_e,*cascade_nose,*cascade_mouth;

CvMemStorage *storage;

char *face_cascade="haarcascade_frontalface_alt2.xml";

char *eye_cascade="haarcascade_mcs_eyepair_big.xml";

char *nose_cascade="haarcascade_mcs_nose.xml";

char *mouth_cascade="haarcascade_mcs_mouth.xml";

/*Deteksi mulut*/

void detectMouth(IplImage *img,CvRect *r){

CvSeq *mouth;

cvSetImageROI(img,/* the source image */

Chapter 9 Face Recognition Systems

http://www.sciencepublishinggroup.com 145

cvRect(r->x, /* x = start from leftmost */

r->y+(r->height *2/3), /* y = a few pixels from the top */

r->width, /* width = same width with the face */

r->height/3 /* height = 1/3 of face height */

)

);

mouth = cvHaarDetectObjects(img,/* the source image, with the

estimated

location defined */

cascade_mouth, /* the eye classifier */

storage, /* memory buffer */

1.15, 4, 0, /* tune for your app */

cvSize(25, 15) /* minimum detection scale */

);

for(int i = 0; i < (mouth ? mouth->total : 0); i++)

{

CvRect *mouth_cord = (CvRect*)cvGetSeqElem(mouth, i);

/* draw a red rectangle */

cvRectangle(img,

cvPoint(mouth_cord->x, mouth_cord->y),

cvPoint(mouth_cord->x + mouth_cord->width, mouth_cord->y +

mouth_cord->height),

CV_RGB(255,255, 255),

1, 8, 0

);

}

}

/*Deteksi hidung*/

void detectNose(IplImage *img,CvRect *r){

CvSeq *nose;

//nose detection- set ROI

cvSetImageROI(img, /* the source image */

cvRect(r->x, /* x = start from leftmost */

r->y, /* y = a few pixels from the top */

r->width, /* width = same width with the face */

Modern Robotics with OpenCV

146 http://www.sciencepublishinggroup.com

r->height /* height = 1/3 of face height */

)

);

nose = cvHaarDetectObjects(img, /* the source image, with the

estimated location defined */

cascade_nose, /* the eye classifier */

storage, /* memory buffer */

1.15, 3, 0, /* tune for your app */

cvSize(25, 15) /* minimum detection scale */

);

for(int i = 0; i < (nose ? nose->total : 0); i++)

{

CvRect *nose_cord = (CvRect*)cvGetSeqElem(nose, i);

/* gambar kotak merah */

cvRectangle(img,

cvPoint(nose_cord->x, nose_cord->y),

cvPoint(nose_cord->x + nose_cord->width, nose_cord->y +

nose_cord->height),

CV_RGB(0,255, 0),

1, 8, 0

);

}

}

/*eye detection*/

void detectEyes(IplImage *img,CvRect *r){

char *eyecascade;

CvSeq *eyes;

int eye_detect=0;

/* Set the Region of Interest: estimate the eyes' position */

cvSetImageROI(img, /* the source image */

cvRect

(

r->x, /* x = start from leftmost */

r->y + (r->height/5.5), /* y = a few pixels from the top */

Chapter 9 Face Recognition Systems

http://www.sciencepublishinggroup.com 147

r->width, /* width = same width with the face */

r->height/3.0 /* height = 1/3 of face height */

)

);

/* deteksi mata */

eyes = cvHaarDetectObjects(img, /* the source image, with

the

estimated location defined */

cascade_e, /* the eye classifier */

storage, /* memory buffer */

1.15, 3, 0, /* tune for your app */

cvSize(25, 15) /* minimum detection scale */

);

printf("\n eye detected %d",eyes->total);

/* draw rectangle */

for(int i = 0; i < (eyes ? eyes->total : 0); i++)

{

eye_detect++;

/* get one eye */

CvRect *eye = (CvRect*)cvGetSeqElem(eyes, i);

/* draw a red rectangle */

cvRectangle(img,

cvPoint(eye->x, eye->y),

cvPoint(eye->x + eye->width, eye->y + eye->height),

CV_RGB(0, 0, 255),

1, 8, 0

);

}

}

void detectFacialFeatures(IplImage *img,IplImage *temp_img,int

img_no){

char image[100],msg[100],temp_image[100];

float m[6];

double factor = 1;

CvMat M = cvMat(2, 3, CV_32F, m);

Modern Robotics with OpenCV

148 http://www.sciencepublishinggroup.com

int w = (img)->width;

int h = (img)->height;

CvSeq* faces;

CvRect *r;

m[0] = (float)(factor*cos(0.0));

m[1] = (float)(factor*sin(0.0));

m[2] = w*0.5f;

m[3] = -m[1];

m[4] = m[0];

m[5] = h*0.5f;

cvGetQuadrangleSubPix(img, temp_img, &M);

CvMemStorage* storage=cvCreateMemStorage(0);

cvClearMemStorage(storage);

if(cascade)

faces = cvHaarDetectObjects(img,cascade, storage, 1.2, 2,

CV_HAAR_DO_CANNY_PRUNING, cvSize(20, 20));

else

printf("\nFrontal face cascade not loaded\n");

printf("\n Jumlah wajah yang dideteksi %d",faces->total);

/* for each face found, draw a red box */

for(int i = 0 ; i < (faces ? faces->total : 0) ; i++)

{

r = (CvRect*)cvGetSeqElem(faces, i);

cvRectangle(img,cvPoint(r->x, r->y),cvPoint(r->x + r-

>width, r->y + r->height),

CV_RGB(255, 0, 0), 1, 8, 0);

printf("\n face_x=%d face_y=%d wd=%d ht=%d",r->x,r->y,r-

>width,r->height);

detectEyes(img,r);

/* reset region of interest */

cvResetImageROI(img);

detectNose(img,r);

cvResetImageROI(img);

detectMouth(img,r);

Chapter 9 Face Recognition Systems

http://www.sciencepublishinggroup.com 149

cvResetImageROI(img);

}

/* reset region of interest */

cvResetImageROI(img);

if(faces->total>0)

{

sprintf(image,"D:\\face_output\\%d.jpg",img_no);

cvSaveImage(image, img);

}

}

int main(int argc, char** argv)

{

CvCapture *capture;

IplImage *img,*temp_img;

Int key;

char image[100],temp_image[100];

storage = cvCreateMemStorage(0);

cascade = (CvHaarClassifierCascade*)cvLoad(face_cascade, 0,

0, 0);

cascade_e = (CvHaarClassifierCascade*)cvLoad(eye_cascade, 0,

0, 0);

cascade_nose = (CvHaarClassifierCascade*)cvLoad(nose_cascade,

0, 0, 0);

cascade_mouth =

(CvHaarClassifierCascade*)cvLoad(mouth_cascade, 0, 0, 0);

if(!(cascade || cascade_e ||cascade_nose||cascade_mouth))

{

fprintf(stderr, "ERROR: Could not load classifier

cascade\n");

return -1;

}

for(int j=20;j<27;j++)

{

sprintf(image,"D:\\image\\%d.jpg",j);

Modern Robotics with OpenCV

150 http://www.sciencepublishinggroup.com

img=cvLoadImage(image);

temp_img=cvLoadImage(image);

if(!img)

{

printf("Could not load image file and trying once

again: %s\n",image);

}

printf("\n curr_image = %s",image);

detectFacialFeatures(img,temp_img,j);

}

cvReleaseHaarClassifierCascade(&cascade);

cvReleaseHaarClassifierCascade(&cascade_e);

cvReleaseHaarClassifierCascade(&cascade_nose);

cvReleaseHaarClassifierCascade(&cascade_mouth);

cvReleaseMemStorage(&storage);

cvReleaseImage(&img);

cvReleaseImage(&temp_img);

return 0;

}

Chapter 9 Face Recognition Systems

http://www.sciencepublishinggroup.com 151

Figure 9.4 Face features detected.

Face Recognition Systems

We have developed a framework for face recognition system and faces

database called ITS face database and will be compared with ATT and Indian

face database. The advantages of our framework is able to store ordered item

from customer in.xml file and displayed on the screen. In this research, we

construct images under different illumination conditions by generate a random

value for brightness level for ITS face database. Each of face database consists

of 10 sets of people’s face. Each set of ITS face database consists of 3 poses

(front, left, right) and varied with illumination [13].

Modern Robotics with OpenCV

152 http://www.sciencepublishinggroup.com

Figure 9.5 ITS, Indian and ATT face database used as comparison to see the effect of

illumination at face recognition [13].

Rapid Object Detection with a Cascade of Boosted

Classifiers Based on Haar-like Features

To train and use a cascade of boosted classifiers for rapid object detection. A

large set of over-complete haar-like features provide the basis for the simple

individual classifiers. Examples of object detection tasks are face, eye and nose

detection, as well as logo detection. The sample detection task is logo detection,

since logo detection does not require the collection of large set of registered and

carefully marked object samples. For training a training samples must be

collected. There are two sample types: negative samples and positive samples.

Negative samples correspond to non-object images. Positive samples

correspond to object images.

Chapter 9 Face Recognition Systems

http://www.sciencepublishinggroup.com 153

Negative Samples

Negative samples are taken from arbitrary images. These images must not

contain object representations. Negative samples are passed through

background description file. It is a text file in which each text line contains the

filename (relative to the directory of the description file) of negative sample

image. This file must be created manually. Note that the negative samples and

sample images are also called background samples or background samples

images, and are used interchangeably in this document. Example of negative

description file:

/img

img1.jpg

img2.jpg

bg.txt

File bg.txt:

img/img1.jpg

img/img2.jpg

Positive Samples

Positive samples are created by createsamples utility. They may be created

from single object image or from collection of previously marked up images.

The single object image may for instance contain a company logo. Then are

large set of positive samples are created from the given object image by

randomly rotating, changing the logo color as well as placing the logo on

arbitrary background.

The amount and range of randomness can be controlled by command line

arguments.

Command line arguments:

- vec <vec_file_name>

name of the output file containing the positive samples for training

- img <image_file_name>

source object image (e.g., a company logo)

- bg <background_file_name>

Modern Robotics with OpenCV

154 http://www.sciencepublishinggroup.com

background description file; contains a list of images into which randomly

distorted versions of the object are pasted for positive sample generation

- num <number_of_samples>

number of positive samples to generate

- bgcolor <background_color>

background color (currently grayscale images are assumed); the background

color denotes the transparent color. Since there might be compression artifacts,

the amount of color tolerance can be specified by –bgthresh. All pixels between

bgcolor-bgthresh and bgcolor+bgthresh are regarded as transparent.

- bgthresh <background_color_threshold>

- inv

if specified, the colors will be inverted

- randinv

if specified, the colors will be inverted randomly

- maxidev <max_intensity_deviation>

maximal intensity deviation of foreground samples pixels

- maxxangle <max_x_rotation_angle>,

- maxyangle <max_y_rotation_angle>,

- maxzangle <max_z_rotation_angle>

maximum rotation angles in radians

-show

if specified, each sample will be shown. Pressing ‘Esc’ will continue creation

process without samples showing. Useful debugging option.

- w <sample_width>

width (in pixels) of the output samples

- h <sample_height>

height (in pixels) of the output samples

Chapter 9 Face Recognition Systems

http://www.sciencepublishinggroup.com 155

White noise is added to the intensities of the foreground. If –inv key is

specified then foreground pixel intensities are inverted. If –randinv key is

specified then it is randomly selected whether for this sample inversion will be

applied. Finally, the obtained image is placed onto arbitrary background from

the background description file, resized to the pixel size specified by –w and –h

and stored into the file specified by the –vec command line parameter. Positive

samples also may be obtained from a collection of previously marked up images.

This collection is described by text file similar to background description file.

Each line of this file corresponds to collection image. The first element of the

line is image file name. It is followed by number of object instances. The

following numbers are the coordinates of bounding rectangles (x, y, width,

height).

Example of description file:

Directory structure:

/img

img1.jpg

img2.jpg

info.dat

File info.dat:

img/img1.jpg 1 140 100 45 45

img/img2.jpg 2 100 200 50 50 50 30 25 25

Image img1.jpg contains single object instance with bounding rectangle (140,

100, 45, 45). Image img2.jpg contains two object instances.

In order to create positive samples from such collection –info argument

should be specified instead of –img:

- info <collection_file_name>

description file of marked up images collection

The scheme of sample creation in this case is as follows. The object instances

are taken from images. Then they are resized to samples size and stored in

output file. No distortion is applied, so the only affecting arguments are –w, -h,

-show and –num.

Modern Robotics with OpenCV

156 http://www.sciencepublishinggroup.com

Create samples utility may be used for examining samples stored in positive

samples file. In order to do this only –vec, –w and –h parameters should be

specified.

Note that for training, it does not matter how positive samples files are

generated. So the createsamples utility is only one way to collect/create a vector

file of positive samples.

Training

The next step after samples creation is training of classifier. It is performed

by the haartraining utility.

Command line arguments:

- data <dir_name>

directory name in which the trained classifier is stored

- vec <vec_file_name>

file name of positive sample file (created by trainingsamples utility or by any

other means)

- bg <background_file_name>

background description file

- npos <number_of_positive_samples>,

- nneg <number_of_negative_samples>

number of positive/negative samples used in training of each classifier stage.

Reasonable values are npos = 7000 and nneg = 3000.

- nstages <number_of_stages>

number of stages to be trained

- nsplits <number_of_splits>

determines the weak classifier used in stage classifiers. If 1, then a simple stump

classifier is used, if 2 and more, then CART classifier with number_of_splits

internal (split) nodes is used

- mem <memory_in_MB>

Chapter 9 Face Recognition Systems

http://www.sciencepublishinggroup.com 157

available memory in MB for precalculation. The more memory you have the

faster the training process

- sym (default),

- nonsym

specifies whether the object class under training has vertical symmetry or not.

Vertical symmetry speeds up training process. For instance, frontal faces show

off vertical symmetry

- minhitrate <min_hit_rate>

minimal desired hit rate for each stage classifier. Overall hit rate may be

estimated as (min_hit_rate^number_of_stages)

- maxfalsealarm <max_false_alarm_rate>

maximal desired false alarm rate for each stage classifier. Overall false alarm

rate may be estimated as (max_false_alarm_rate^number_of_stages)

- weighttrimming <weight_trimming>

Specifies wheter and how much weight trimming should be used. A decent

choice is 0.90.

- eqw

- mode <BASIC (default) | CORE | ALL>

selects the type of haar features set used in training. BASIC use only upright

features, while ALL uses the full set of upright and 45 degree rotated feature set.

See [1] for more details.

- w <sample_width>,

- h <sample_height>

Size of training samples (in pixels). Must have exactly the same values as used

during training samples creation (utility trainingsamples)

Note: in order to use multiprocessor advantage a compiler that supports

OpenMP 1.0 standard should be used. OpenCV cvHaarDetectObjects() function

(in particular haarFaceDetect demo) is used for detection.

Modern Robotics with OpenCV

158 http://www.sciencepublishinggroup.com

Test Samples

In order to evaluate the performance of trained classifier a collection of

marked up images is needed. When such collection is not available test samples

may be created from single object image by createsamplesutility. The scheme of

test samples creation in this case is similar to training samples creation since

each test sample is a background image into which a randomly distorted and

randomly scaled instance of the object picture is pasted at a random position. If

both –img and –info arguments are specified then test samples will be created

by createsamples utility. The sample image is arbitrary distorted as it was

described below, then it is placed at random location to background image and

stored. The corresponding description line is added to the file specified by –info

argument. The –w and –h keys determine the minimal size of placed object

picture.

The test image file name format is as follows:

imageOrderNumber_x_y_width_height.jpg,

where x, y, width and height are the coordinates of placed object bounding

rectangle.

Note that you should use a background images set different from the

background image set used during training. In order to evaluate the performance

of the classifier performance utility may be used. It takes a collection of marked

up images, applies the classifier and outputs the performance, i.e. number of

found objects, number of missed objects, number of false alarms and other

information.

Command line arguments:

- data <dir_name>

directory name in which the trained classifier is stored

- info <collection_file_name>

file with test samples description

- maxSizeDiff <max_size_difference>,

- maxPosDiff <max_position_difference>

Chapter 9 Face Recognition Systems

http://www.sciencepublishinggroup.com 159

determine the criterion of reference and detected rectangles coincidence.

Default values are 1.5 and 0.3 respectively.

- sf <scale_factor>,

detection parameter. Default value is 1.2.

- w <sample_width>,

- h <sample_height>

Size of training samples (in pixels). Must have exactly the same values as used

during training (utility haartraining).

Exercises

1) Create a program for smile detector using haarcascade_smile.xml.

2) Create a program for online face and Gender Recognition system using

fischerfaces and OpenCV.

Figure 9.6 Face and Gender Recognition Systems (improved from [21]).

Modern Robotics with OpenCV

160 http://www.sciencepublishinggroup.com

References

[1] Acosta, L., González, E.J., Rodríguez, J.N., Hamilton, A.F., Méndez J.A.,

Hernéndez S., Sigut S.M, and Marichal G.N. Design and Implementation of a

Service Robot for A Restaurant. International Journal of robotics and automation.

2006; vol. 21(4): pp. 273-281.

[2] Qing-wiau Y., Can Y., Zhuang F. and Yan-Zheng Z. Research of the Localization

of Restaurant Service Robot. International Journal of Advanced Robotic Systems.

2010; vol. 7(3): pp. 227-238.

[3] Chatib, O., Real-Time Obstacle Avoidance for Manipulators and Mobile Robots.,

The International Journal of Robotics Research, 1986; vol. 5(1), pp. 90-98.

[4] Borenstein, J., Koren, Y., The Vector Field Histogram- Fast Obstacle Avoidance

for Mobile Robots, in proc. IEEE Trans. On Robotics and Automation. 1991; vol

7(3): pp.278-288.

[5] S. Nuryono, Penerapan Multi Mikrokontroler pada Model Robot Mobil

Menggunakan Logika Fuzzy, Journal Telkomnika, 2009, vol. 7(3), pp, 213-218.

[6] Masehian E., Katebi Y. Robot Motion Planning in Dynamic Environments with

Moving Obstacles and Target. International Journal of Mechanical Systems

Science and Engineering. 2007; vol. 1(1), pp. 20-29.

[7] Budiharto, W., Purwanto, D. and Jazidie, A. A Robust Obstacle Avoidance for

Service Robot using Bayesian Approach. International Journal of Advanced

Robotic Systems. Intech Publisher – Austria. 2011; Vol. 8(1): pp. 52-60.

[8] Budiharto, W., Purwanto, D. & Jazidie, A. A Novel Method for Static and Moving

Obstacle Avoidance for Service robot using Bayesian Filtering. Proceeding of

IEEE 2nd International conf. on Advances in Computing, Control and

Telecommunications Technology.2010; pp. 156-160. DOI: 10.1109/ACT.2010.51.

[9] Purwanto, D. Visual Feedback Control in Multi-Degrees-of-Freedom Motion

System. PhD thesis at Graduate School of Science and Technology - Keio

University, Japan. 2001.

[10] Turk, M. & Pentland A. Eigenfaces for recognition. International Journal of

Cognitive Neuroscience. 1991; vol. 3(1): pp. 71-86.

[11] Belhumeur, P. & Kriegman, D. What is the set of images of an object under all

possible illumination conditions. International Journal of Computer Vision. 1998;

Vol. 28(3), pp. 245-260.

http://cs.stanford.edu/groups/manips/images/pdfs/Khatib_1986_IJRR.pdf
http://ijr.sagepub.com/

Chapter 9 Face Recognition Systems

http://www.sciencepublishinggroup.com 161

[12] Etemad, K. & Chellappa R. Discriminant analysis for recognition of human face

images. Journal of the Optical Society of America A. 1997; vol. 14(8): pp. 1724-

1733.

[13] Budiharto, W., Santoso A., Purwanto, D. and Jazidie, A. An Improved Face

recognition System for Service Robot using Stereo Vision. In: Tudor Barbu Editor.

Face Recognition / Book 3. Intech Publisher – Austria; 2011: pp. 1-12.

[14] Hu, H. & Brady, M. A Bayesian Approach to Real-Time Obstacle Avoidance for a

Mobile Robot. Autonomous Robots. 1994; vol. 1: pp. 69-92.

[15] Turk, M., and Pentland, A. Eigenfaces for recognition. Journal of Cognitive

Neuroscience 3 (1991), 71–86.

[16] Chiara Turati, Viola Macchi Cassia, F. S., and Leo, I. Newborns face recognition:

Role of inner and outer facial features. Child Development 77, 2 (2006), 297–311.

[17] Belhumeur, P. N., Hespanha, J., and Kriegman, D. Eigenfaces vs. Fisherfaces:

Recognition Using Class Specific Linear Projection. IEEE Transactions on Pattern

Analysis and Machine Intelligence 19, 7 (1997), 711–720.

[18] Wiskott, L., Fellous, J., Krüger, N., Malsburg, C. Face Recognition By Elastic

Bunch Graph Matching. IEEE Transactions on Pattern Analysis and Machine

Intelligence 19 (1997), S. 775–779.

[19] Messer, K. et al. Performance Characterisation of Face Recognition Algorithms

and Their Sensitivity to Severe Illumination Changes. In: In: ICB, 2006, S. 1–11.

[20] Ahonen, T., Hadid, A., and Pietikainen, M. Face Recognition with Local Binary

Patterns. Computer Vision - ECCV 2004 (2004), 469–481.

[21] Daniel Bagio et al, Mastering OpenCV with Practical Computer Vision Project,

Pact publisher, 2012.

[22] Opencv.org.

Chapter 10

Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 165

On successful completion of this course, students will be able to:

 Explain how the humanoid robot works.

 Develop vision-based humanoid robot.

 Explain object detection using keypoints and feature matching.

Introduction

Modern Humanoid Robot in uncontrolled environments needs to be based on

vision and versatile. This paper propose a method for object measurement and

ball tracking method using Kalman Filter for Humanoid Soccer, because the

ability to accurately track a ball is one of the important features for processing

high-definition image. A color-based object detection is used for detecting a ball

while PID controller is used for controlling pan tilt camera system. We also

modify the robot’s controller CM-510 in order able to communicate efficiently

using main controller.

Humanoid Robot

The humanoid robot is popular nowadays for the entertainment or contests

such as RoboCup Humanoid League. The important features of humanoid

soccer, such as accuracy, robustness, efficient determination and tracking of ball

size and location; has proven to be a challenging subset of this task and the

focus of much research. With the evolution of robotics hardware and subsequent

advances in processor performance in recent years, the temporal and spatial

complexity of feature extraction algorithms to solve this task has grown (Ha et

al, 2011).

In the case of Humanoid soccer, vision systems are one of the main sources

for environment interpretation. Many problems have to be solved before having

a fully featured soccer player. First of all, the robot has to get information from

the environment, mainly using the camera. It must detect the ball, goals, lines

and the other robots. Having this information, the robot has to self-localize and

decide the next action: move, kick, search another object, etc. The robot must

perform all these tasks very fast in order to be reactive enough to be competitive

in a soccer match. It makes no sense within this environment to have a good

localization method if that takes several seconds to compute the robot position

Modern Robotics with OpenCV

166 http://www.sciencepublishinggroup.com

or to decide the next movement in few seconds based on the old perceptions

(Martin et al, 2011). At the same time many other topics like human-machine

interaction, robot cooperation and mission and behavior control give humanoid

robot soccer a higher level of complexity like no any other robots (Blanes et al,

2011). So the high speed processor with efficient algorithms is needed for this

issue.

One of the performance factors of a humanoid soccer is that it is highly

dependent on its tracking ball and motion ability. The vision module collects

information that will be the input for the reasoning module that involves the

development of behaviour control. Complexity of humanoid soccer makes

necessary playing with the development of complex behaviours, for example

situations of coordination or differ rent role assignment during the match. There

are many types of behaviour control, each with advantages and disadvantages:

reactive control is the simplest way to make the robot play, but do not permit

more elaborated strategies as explained for example in (Behnke, 2001). On the

other side, behaviour-based control are more complex but more difficult to

implement, and enables in general the possibility high-level behaviour control,

useful for showing very good performances. Intelligent tracking algorithm for

state estimation using Kalman filter has been successfully developed (Noh et al,

2007), and we want to implement that method for ball tracking for humanoid

soccer robot.

We propose architecture of low cost humanoid soccer robot compared with

the well known humanoid robots for education such as DarwIn-OP and NAO

and test its ability for image processing to measure distance of the ball and track

a ball using color-based object detection method, the robot will kick the ball

after getting the nearest position between the robot and the ball. The Kalman

filter is used here to estimate state variable of a ball that is excited by random

disturbances and measurement noise. It has good results in practice due to

optimality and structure and convenient form for online real time processing.

For future robotics, we will familiar with term of robot ethics. Robot ethics

is a growing interdisciplinary research effort roughly in the intersection of

applied ethics and robotics with the aim of understanding the ethical

implications and consequences of robotic technology. Swarm robotics is a new

approach to the coordination of multirobot systems which consist of large

numbers of mostly simple physical robots. It is supposed that a desired

collective behavior emerges from the interactions between the robots and

interactions of robots with the environment. Swarm robotics systems are

http://en.wikipedia.org/w/index.php?title=Multirobot_system&action=edit&redlink=1
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Collective_behavior

Chapter 10 Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 167

characterized by decentralized control, limited communication between robots,

and use of local information and emergence of global behavior.

The Architecture of the Humanoid Robot

Humanoid soccer robots design based on the vision involves the need to

obtain a mechanical structure with a human appearance, in order to operate into

a human real world. Another important feature for modern humanoid robot is

the ability to process tasks especially for computer vision. We propose an

embedded system that able to handle high speed image processing, so we use

main controller based on the ARM7 Processor. Webcam and servo controller

are used to track a ball, and the output of the main controller will communicate

with the CM510 controller to control the actuators and sensors of the robot as

shown in figure. 10.1.

Figure 10.1 Architecture of high speed system for Humanoid Soccer Robot.

The main controller uses Odroid X2 that consist of Cortext-A9 1.7 GHz and

sufficient memory and ports to be connected with other devices as shown in fig.

10.2. The specification of the Odroid X2:

 Exynos4412 Quad-core ARM Cortex-A9 1.7GHz.

 2GByte Memory.

 6 x High speed USB2.0 Host port.

 10/100Mbps Ethernet with RJ-45 LAN Jack.

Modern Robotics with OpenCV

168 http://www.sciencepublishinggroup.com

Figure 10.2 Odroid X2 for processing the images from webcam

(hardkernel.com, 2013).

The Firmware of the robot to control the servos is modified from the original

one named Robotis Firmware due to the limitation for sending a motion

command by serial interface based on Peter Lanius works published in google

code (Lanius, 2013). This firmware instead using RoboTask to program the

robot controlling its movement but it directly program the AVR Microcontroller

inside the CM-510 controller using C language. Using this alternative can

reduce the size of the program from originally 170KB to 70KB in the memory.

By this firmware, the robot can be connected directly to Ball Tracking System

using USB Serial Interface to command its motion. Based on this framework, it

opens an opportunity to built Real Time Operating System for the robot. The

robot’s control starts with initialization routines of CM-510 controller then

move to Wait for Start Button state. In this state, it waits the button to be

pressed to change the start_button_pressed variable from FALSE to TRUE then

move to Dynamixel and Gyro Initialization which send broadcast ping to every

Dynamixel servo connected to CM-510. When one or more servos do not

respond of the ping then CM-510 will send a message mentioning the failure of

a servo to serial terminal. Gyro Initialization does gyro calibration in the robot

to get center reference and sends the value to serial terminal. Next state is

Waiting Motion Command that waits the command through serial interface,

from terminal or tracking module, then check if the command is valid or not. If

it does not valid then the state will repeat to Wait Motion Command or continue

Chapter 10 Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 169

to next Execute Motion Command state when the command is valid. Execute

Motion Command executes a motion command to move a servos based on

defined Look-Up-Table (LUT).

For example, when a command says WALKING then the state looks servo’s

values for WALKING stored in the LUT then sends it to Dynamixel servo

through serial bus. When a motion is completed then it move to preceding state

but if there is an emergency which is determined by pressing start button when

the servos is moving compared to command input which does not receive stop

command, then it move to Dynamixel Torque Disable to disable all the servo’s

torque to save from damage and move to Wait for Start Button state. The

improved system to accept commands from the main controller is shown as the

state machine in figure 10.3.

Figure 10.3 State machine of the robot’s controller.

Modern Robotics with OpenCV

170 http://www.sciencepublishinggroup.com

Ball Distance Estimation and Tracking Algorithm

Computer vision is one of the most challenging applications in sensor

systems since the signal is complex from spatial and logical point of view. An

active camera tracking system for humanoid robot soccer tracks an object of

interest (ball) automatically with a pan-tilt camera. We use OpenCV for

converting to HSV (Hue Saturation-Value), extract Hue & Saturation and create

a mask matching only the selected range of hue value (Szeliski, 2010).

To have a good estimation, the object must be in the centre of the image, i.e.

it must be tracked. Once there, the distance and orientation are calculated,

according to the neck’s origin position, the current neck‘s servomotors position

and the position of the camera in respect to the origin resulting of the design

(Maggi, 2007). We considered method for distance estimation of the ball by

centering the ball on the camera image, using the head tilt angle to estimate the

distance to the ball.

Region growing algorithms are also used to locate the ball color blobs that

have been identified by region growing and are useful and robust source for

further image processing, as demonstrated by (Ghanai, 2009). The ball will be

tracked based on the color and webcam will track to adjust the position of the

ball to the center of the screen based on the Algorithm 1.

Algorithm 1: Ball tracking and Kick the ball

Get input image from the camera

Convert to HSV (Hue-Saturation-Value)

Extract Hue & Saturation

Create a mask matching only for the selected range of hue

Create a mask matching only for the selected saturation levels.

Find the position (moment) of the selected regions.

If ball detected then

Estimate distance of the ball

Object tracking using Kalman Filter

centering the position of the ball

Move robot to the ball

If ball at the nearest position with the robot then

Kick the ball

endif

Chapter 10 Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 171

endif

The estimated position , from Kalman filter is used as an input to PID

controller. We use a PID controller to calculate an error value as the difference

between a measured (input) and a desired set point to control high speed HS-85

servos. The controller attempts to minimize the error by adjusting (an Output).

The model of PID Controller is shown in figure 10. 4:

Figure 10.4 General PID Controller.

The output of a PID controller, equal to the control input to the system, in the

time-domain is as follows:

 (10.1)

A Framework of Multiple Moving Obstacles Avoidance

Strategy

Because we want a general model for humanoid service robot, we propose a

framework for multiple moving obstacles avoidance strategy using stereo vision.

A multiple moving obstacle avoidance strategy is an important framework to

develop humanoid service robot in dynamic environment. There are two mains

actors on multiple moving obstacles avoidance system; the Robot itself and the

Range Finder. The Robot interacts with this system to detect customer and

determine moving obstacles. Both processes to detect customer and determine

moving obstacles include a process of face recognition as explained before.

After the obstacles are determined, The Range Finder (camera and its system)

will calculate and estimate the distance of those moving obstacles and estimate

Modern Robotics with OpenCV

172 http://www.sciencepublishinggroup.com

the direction of moving obstacles. Direction estimation of obstacles will be used

to determine optimal maneuver of the Robot to avoid those obstacles. The

framework is shown in figure 10.5:

Figure 10.5 The use case diagram for our multiple moving obstacles avoidance

strategy using stereo vision.

Visual perception is the ability to interpret the information and surroundings

from the effects of visible light reaching the eye. The resulting perception is

also known as eyesight, sight, or vision. Visual-perception-based of service

robot for customer identification is an interpretation process to direct a service

robot to a destination of identified customer based on face recognition system

and computer vision. After interpretation of images from camera done, then it is

Chapter 10 Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 173

used as information for the robot and to decide actions based on the task given

by a developer. The basic of visual–perception model for a humanoid service

robot is shown in figure 10.6:

Figure 10.6 Visual-perception model for vision-based humanoid robot. After

interpretation process, the information used for navigating the robot or deciding

actions for robot, such as direct a robot to customer’s position.

Experiments

Object detection and segmentation is the most important and challenging

fundamental task of computer vision. It is a critical part in many applications

such as image search, image auto-annotation and scene understanding. However

it is still an open problem due to the complexity of object classes and images.

The easiest way to detect and segment an object from an image is the color

based methods. The colors in the object and the background should have a

significant color difference in order to segment objects successfully using color

based methods.

We need a webcam to try detecting a ball using this program demo. Create an

application using Visual C++ 2010 Express edition and OpenCV. Configure the

properties and write a program below:

ColorBased.cpp:

//Demo Program of Color-Based Detection for a Ball

//Copyright Dr. Widodo Budiharto 2014

#include "stdafx.h"

#include <cv.h>

#include <highgui.h>

// threshold image HSV

Modern Robotics with OpenCV

174 http://www.sciencepublishinggroup.com

IplImage* GetThresholdedImage(IplImage* imgHSV){

IplImage*

imgThresh=cvCreateImage(cvGetSize(imgHSV),IPL_DEPTH_8U, 1);

cvInRangeS(imgHSV, cvScalar(170,160,60), cvScalar(180,256,256),

imgThresh);

return imgThresh;

}

int main(){

CvCapture* capture =0;

capture = cvCaptureFromCAM(0);

//set width and height

cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_WIDTH, 640);

cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_HEIGHT, 480);

if(!capture){

printf("Capture failure\n");

return -1;

}

IplImage* frame=0;

cvNamedWindow("Video");

cvNamedWindow("Ball");

//iterasi frame

while(true){

frame = cvQueryFrame(capture);

if(!frame) break;

frame=cvCloneImage(frame);

//smooth the original image using Gaussian kernel

cvSmooth(frame, frame, CV_GAUSSIAN,3,3);

IplImage* imgHSV = cvCreateImage(cvGetSize(frame), IPL_DEPTH_8U,

3);

//ubah formwat color dari BGR ke HSV

cvCvtColor(frame, imgHSV, CV_BGR2HSV);

IplImage* imgThresh = GetThresholdedImage(imgHSV);

//smooth the binary image using Gaussian kernel

cvSmooth(imgThresh, imgThresh, CV_GAUSSIAN,3,3);

cvShowImage("Ball", imgThresh);

Chapter 10 Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 175

cvShowImage("Video", frame);

//bersihkan images

cvReleaseImage(&imgHSV);

cvReleaseImage(&imgThresh);

cvReleaseImage(&frame);

//tunggu 50sec

int c = cvWaitKey(10);

//If 'ESC' is pressed, break the loop

if((char)c==27) break;

}

cvDestroyAllWindows() ;

cvReleaseCapture(&capture);

return 0;

}

The approach proposed in this paper was implemented and tested on a

humanoid Robot named Humanoid Robot Soccer Ver 2.0 based on Bioloid

Premium Robot. By modify the robot’s controller (CM-510) in order to accept

serial command from the main controller, this system able to communicate

efficiently.

Modern Robotics with OpenCV

176 http://www.sciencepublishinggroup.com

Figure 10.7 The original image (a), the mask (a) and ball detected and tracked using

Kalman Filters in the green circle (b).

When a ball is in front of the robot and has been detected, the robot tries to

track the ball, and if the ball at the nearest position with the robot, robot will

kick it as shown in figure 10.8.

Chapter 10 Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 177

Figure 10.8 The robot tracks and kicks a ball when at the correct position [13].

Object Detection Using Keypoint and Feature Matching

The color-based object detector works well only for single-colored objects

and can be fooled by different object of the same color, but color-based object

detection is very fast. If you want to design the vision system for intelligent

robot, you should obviously not rely on color for detecting object, because you

don’t know what the working environment of your robot will look like. So, we

use Machine Learning and Object detection based on keypoints. In this method,

the computer “learn” the characteristics of the whole object template and look

Modern Robotics with OpenCV

178 http://www.sciencepublishinggroup.com

for similar instances in other images. SIFT (Scale Invariant Feature Transform)

is a famous algorithm for keypoint extraction and description) keypoints, and

the matching descriptors between the two images.

Keypoint descriptors are also often called features. Object detection using

SIFT is scale and rotation invariant. The algorithm will detect object that have

the same appearance but a bigger or smaller size in the test image compared

with the training images. Use the FlannBasedMatcher interface in order to

perform a quick and efficient matching by using the FLANN (Fast Approximate

Nearest Neighbor Search Library). SURF is a class for extracting Speeded Up

Robust Features from an image. In short, SURF adds a lot of features to

improve the speed in every step. OpenCV provides SURF functionalities just

like SIFT. You initiate a SURF object with some optional conditions like

64/128-dim descriptors, Upright/Normal SURF, etc.

The features are invariant to image scaling, translation, and rotation, and

partially in-variant to illumination changes and affine or 3D projection. Features

are efficiently detected through a staged filtering approach that identifies stable

points in scale space [14]. The first stage of keypoint detection is to identify

locations and scales assigned under differing views of the same object.

Detecting locations that are invariant to scale change of the image can be

accomplished by searching for stable features across all possible scales, using a

continuous function of scale known as scale space. It has been shown by

Koenderink and Lindeberg that under a variety of reasonable assumptions the

only possible scale-space kernel is the Gaussian function. Therefore, the scale

space of an image is defined as a function, L(x, y, σ), that is produced from the

convolution of a variable-scale Gaussian, G(x, y, σ), with an input image, I(x, y):

),(),,(),,(yxIyxGyxL   . (10.2)

Where * is the convolution operation in x and y, and:

 
222 2)(2)21(),,( yxeyxG   

To efficiently detect stable keypoint locations in scale space, we use scale-

space extrema in the difference-of-Gaussian function convolved with the image:


)),,((),,(

),()],,(),,([),,(





yxLkyxL

yxIyxGkyxGyxD




 

http://docs.opencv.org/modules/features2d/doc/common_interfaces_of_descriptor_matchers.html?highlight=flannbasedmatcher#flannbasedmatcher
http://docs.opencv.org/modules/flann/doc/flann_fast_approximate_nearest_neighbor_search.html

Chapter 10 Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 179



Figure 10.9 Gaussian scale-space pyramid create an interval in the difference-of-

Gaussian pyramid.

Laplacian of Gaussian acts as a blob detector which detects blobs in various

sizes due to change in σ. In short, σ acts as a scaling parameter. We can find the

local maxima across the scale and space which gives us a list of (x,y,σ) values

which means there is a potential keypoint at (x,y) at σ scale. But this LoG is a

little costly, so SIFT algorithm uses Difference of Gaussians which is an

approximation of LoG. Difference of Gaussian is obtained as the difference of

Gaussian blurring of an image with two different σ, let it be σ and kσ. This

process is done for different octaves of the image in Gaussian Pyramid. It is

represented in below image. Once this DoG are found, images are searched for

local extrema over scale and space. In order to detect the local maxima and

minima of G(x, y, σ), each sample point is compared to its eight neighbors in

the current image and nine neighbors in the scale above and below:



Modern Robotics with OpenCV

180 http://www.sciencepublishinggroup.com



Figure 10.10 Maxima and minima detection in the difference-of-Gaussian image.

In 2004, D.Lowe, form University of British Columbia, [14] proposed how to

extracting keypoints and computing descriptors using the Scale Invariant

Feature Transform (SIFT). Keypoints are detected using scale-space extrema in

difference-of-Gaussian function D and efficient to compute. Here is a sample

program using a template file and webcam for SIFT keypoint detector using

FLANN.

FLANN.cpp:

#include "stdafx.h"

#include <iostream>

#include <conio.h>

#include <stdio.h>

#include <cv.h>

#include <highgui.h>

#include "opencv2/core/core.hpp"

#include "opencv2/features2d/features2d.hpp"

#include "opencv2/highgui/highgui.hpp"

#include "opencv2/nonfree/features2d.hpp"

using namespace std;

using namespace cv;

Chapter 10 Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 181

int main()

{

int i=0;

CvRect in_box,output_box;

Mat train=imread("template3.jpg"), train_g;

cvtColor(train,train_g,CV_BGR2GRAY);

//detect SIFT keypoints

vector<KeyPoint> train_kp;

Mat train_desc;

SiftFeatureDetector featureDetector;

featureDetector.detect(train_g,train_kp);

SiftDescriptorExtractor featureExtractor;

featureExtractor.compute(train_g, train_kp, train_desc);

//FLANN based descriptor matcher object

FlannBasedMatcher matcher;

vector<Mat> train_desc_collection (1,train_desc);

matcher.add(train_desc_collection);

matcher.train();

//VideoCapture object

VideoCapture cap(0);

unsigned int frame_count=0;

while (char(waitKey(1)) !='q') {

double to=getTickCount();

Mat test, test_g;

cap>>test;

if (test.empty())

continue;

cvtColor(test,test_g,CV_BGR2GRAY);

//detect SIFT keypoint and extract descriptors in the

test image

vector<KeyPoint> test_kp;

Mat test_desc;

featureDetector.detect(test_g, test_kp);

featureExtractor.compute(test_g,test_kp,test_desc);

//match train and test descriptors, getting 2 nearest

neighbors for all test descriptors

vector<vector<DMatch> > matches;

Modern Robotics with OpenCV

182 http://www.sciencepublishinggroup.com

matcher.knnMatch(test_desc,matches,10);

//filter for good matches according to Lowe's algorithm

vector<DMatch> good_matches;

Mat img_show;

vector<KeyPoint> keypoints_1;

vector<KeyPoint> keypoints_2;

for (i=0;i<matches.size();i++) {

if (matches[i][0].distance <

0.5*matches[i][1].distance)

{

good_matches.push_back(matches[i][0]);

}

}

//-- Localize the object

std::vector<Point2f> obj;

std::vector<Point2f> scene;

drawMatches(test,test_kp, train, train_kp, good_matches,

img_show,Scalar::all(-1), Scalar::all(-

1),vector<char>(),DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

Point2f point1;

int average_X=0;int average_Y=0;

if (good_matches.size() >= 4){

for(int i = 0; i < good_matches.size(); i++)

{

//-- Get the keypoints from the good matches

obj.push_back(train_kp[good_matches[i].trainIdx].pt);

scene.push_back(test_kp[good_matches[i].queryIdx].pt);

point1=test_kp[good_matches[i].queryIdx].pt;

average_X+=point1.x; //get the coordinate of x

}

average_X=(average_X)/good_matches.size();

printf("pointx: %d pointy: %d \n",point1.x, point1.y);

cv::rectangle(img_show , cvPoint(average_X-55, point1.y-50) ,

cvPoint(average_X+50, point1.y+50) , Scalar(255, 0, 255),

1);

}

imshow("Matches", img_show);

Chapter 10 Intelligent Humanoid Robot

http://www.sciencepublishinggroup.com 183

cout<<"Frame rate="<<getTickFrequency()/(getTickCount()-

t0)<<endl;

}

return 0;

}



Figure 10.11 Robust Object detector using FLANN based matcher, rectangle line used

to get center position of the object.

References

[1] Adrian Kaehler & Garry Bradksy, Learning OpenCV: Computer Vision in C++

with the OpenCV Library, O'Reilly PUblisher, 2014.

[2] Samarth Brahmbatt, Practical OpenCV, Technology in Action Publisher, 2013.

[3] Daniel bagio et al., Mastering OpenCV with Practical Computer Vision Project,

Packt Publisher, 2012.

Chapter 11

Vision-Based Obstacles Avoidance

http://www.sciencepublishinggroup.com 187

On successful completion of this course, students will be able to:

 Describe the problem of obstacle avoidance in service robot.

 Develop a program for obstacle avoidance using probabilistic

robotics.

Introduction

In recent years, service robots developed for various applications such as the

personal, medical and welfare robots. Technologies and methods used for

service robots increased drastically to make it more intelligent, and resulting

these kind of robots available commercially.Among the indoor service robots,

those that are able to operate in environments with humans, and especially

those that are able to interact with the customer have gained high interest in

recent years. The major task routinely performed by a service robot (for

example deliver a cup, picking a cup and human robot interaction) are based on

visually perceived information. In order a service robot perform such tasks,

they must also have the ability to perceive and act upon visual information.

Computer Vision is a an important tools for robotics systems since it mimics the

human sense of vision and allows for non-contact measurement of the

environment. A good program using vision sensor will make a service robot

have the ability to detects and identifies detailed object around it (such as face

recognition, distance measurement of obstacle, and free area for path planning).

The main concern when develop a service robot is obstacle avoidance system

and the implementation of stereo camera as an important vision sensor.

Obstacle Avoidance of Service Robot

The development of an obstacle avoidance system for robots to accurately

detect moving obstacles in indoors is challenging task. The navigation and

obstacle avoidance strategy are the important aspects in a vision-based service

robot. Bayesian techniques provide a powerful statistical tool to help manage

measurement uncertainty and perform multisensor fusion and identity

estimation. The advantages of probabilistic robotics are able to accommodate

imperfect sensors (such as camera with noises), robust in real world applications

and best known approach to many hard robotics problem. Based on literatures

obtained by the authors, many research in development of service robot such as

Modern Robotics with OpenCV

188 http://www.sciencepublishinggroup.com

[1][2], whereas task of the service robot is the setting and clearing of tables in a

controlled environment without stereo camera. However, there is no multiple

moving obstacles avoidance method for service robot in indoor environment

exposed especially using stereo camera. The contribution of this chapter is the

introduction of a new method of multiple moving obstacles avoidance for

service robots using a stereo camera in indoor environment.

A mobile robot involving two actuator wheels is considered as a system

subject to nonholonomic constraints and usually using fuzzy logic to control the

motor [5]. Consider an autonomous wheeled mobile robot and position in the

Cartesian frame of coordinates shown in Figure 11.1, where and are the

two coordinates of the origin P of the moving frame and is the robot

orientation angle with respect to the positive x-axis. The rotation angle of the

right and left wheel denoted as and and radius of the wheel by R thus the

configuration of the mobile robot qR can be described by five generalized

coordinates such as:

T

lrRRRR yxq),,,,( (11.1)

Based on Figure 11.1, is the linear velocity, is the angular velocity,

and are radial and angular coordinate of the robot [6]. The kinematics

equations of motion for the robot given by:

 RRR vx cos (11.2)

 RRR vy sin (11.3)

RR   (11.4)

The angular velocity of the right and left wheel can be obtained by:

 dt

d r
r


  and

dt

d l
l


  (11.5)

Finally, the linear velocity can be formulated as:

 2/)(lrR Rv   (11.6)

Chapter 11 Vision-Based Obstacles Avoidance

http://www.sciencepublishinggroup.com 189

Figure 11.1 Cartesian representation of mobile robot.

Based on the model in Figure 11.1, we propose the model of a mobile robot

using a stereo camera with a moving obstacle as shown in Figure 11.2. A

camera as a vision sensor has limitations in view angle to capture an object, so

we define Cam as a maximum angle that moving obstacles can be detected by a

camera used in this research. The location of an object shall consist of the object

position and orientation.

Modern Robotics with OpenCV

190 http://www.sciencepublishinggroup.com

Figure 11.2 General cartesian model of mobile robot using stereo camera.

We have developed a vision-based service robot called Beebot to deliver a

cup to customer with voice recognition and telepresence capabilities using

Tigal EasyVR Shield for Arduino 2.0. The voice recognition system has the

ability for users to create up to 28 of their own custom Speaker Independent (SI)

Command Vocabularies using the Quick T2SI Lite Software (license available

separately). Additionally the EeasyVR 2.0 includes SonicNet technology for

wireless communication between modules or any other sound source. DTMF

tone generation is also included.

Stereo Imaging Model

We have developed a system for face detection using Haar cascade classifier

and depth estimation for measuring distance of peoples as moving obstacles

using stereo vision. In the stereo imaging model, the tree-dimensional points in

stereo camera frame are projected in the left and the right image frame. On the

contrary, using the projection of the points onto the left and right image frame,

the three-dimensional points positions in stereo camera frame can be located.

Figure 11.4 shows the stereo imaging model using the left front image frame LF

and right front image frame RF [9].

Chapter 11 Vision-Based Obstacles Avoidance

http://www.sciencepublishinggroup.com 191

Figure 11.3 Stereo Imaging model.

By using stereo vision, we can obtain the position of each moving obstacle in

the images, then we can calculate and estimate the distance of the moving

obstacle. Kalman filtering used for the stability of the distance estimation. The

three-dimensional point in stereo camera frame can be reconstructed using the

two-dimensional projection of point in left front image frame and in right front

image frame using formula :

SC RI LI1
x x x2

SC SC RI
y yRI LI

x xSC
z

q a (q q)
2

q a q
q q

f aq

   
   

    
   

      

q (7)

Note that y

RI

y

LI qq 

To estimate the direction θdirection of moving obstacle using stereo vision, we

calculate using the figure and formula below:

Modern Robotics with OpenCV

192 http://www.sciencepublishinggroup.com

Figure 11.4 Direction estimation using stereo vision.

 θdirection =arc tan

 (8)

Probabilistic Robotics for Multiple Obstacle Avoidance

Method

Camera as vision sensor sometimes have distortion, so Bayesian decision

theory used to state estimation and determine the optimal response for the robot

based on inaccurate sensor data. Bayesian decision rule probabilistically

estimate a dynamic system state from noisy observations. Examples of

measurement data include camera images and range scan. If x is a quantity that

we would like to infer from y, the probability p(x) will be referred to as prior

probability distribution. The Bayesian update formula is applied to determine

the new posterior p(x, y) whenever a new observation is obtained:

 (11.9)

To apply Bayesian approach for obstacle avoidance where someone who

walks with a direction indicated as an unexpected obstacle, we consider this

obstacle to be a random event. The probabilistic information in z about  is

described by a conditional probability density function)|(zp of the

observation vector z. Let  denote the state of the path to be a random variable

consisting of four states:

Chapter 11 Vision-Based Obstacles Avoidance

http://www.sciencepublishinggroup.com 193

1 2 3 4(, , ,)

(obstacle,no _ obstacle,direction _ right,direction _ left)

    


 (11.10)

If we want a service robot should stay on the path to goal in any case,

strategies to avoid moving obstacle include:

 Maneuver to the right, if detected moving obstacle is moving toward the

left. Maneuver to the left, if detected moving obstacle is moving toward

the right.

 Stop, if moving obstacle too close to robot detected both by vision and

ultrasonic sensors.

Then, we restrict the action space denoted as A as:

1, 2 3(a a ,a)

maneuver to right, maneuver to left,stop

 


 (11.11)

We define a loss function L(a, θ) which gives a measure of the loss incurred

in taking action a when the state is θ. The robot should chooses an action a

from the set A of possible actions based on the observation z of the current state

of the path θ. This gives the posterior distribution of θ as:

 


)()|(

)()|(
)|(






pzp

pzp
zp (11.12)

Then, based on the posterior distribution in (11.12), we can compute the

posterior expected loss of an action [14]:




)|(),()),|((zpaLazpB (11.13)

Multiple Moving Obstacles Avoidance Method and

Algorithm

We have proposed a method and algorithm of obstacles avoidance for service

robot that run from start to goal position, giving a cup to customer and going

back to home. This method will identify a customer, checking moving obstacles

and its distance and take action for maneuver to avoid the collision. Stereo

Modern Robotics with OpenCV

194 http://www.sciencepublishinggroup.com

camera used has limitation such as angle view, this camera only able to capture

object infront of it about 30°. So, when the robot starts to maneuver, the moving

obstacle could be out of view area of camera. So for this experiment, we have

proposes a predefined motion for maneuver based on the estimation speed and

direction of moving obstacle.

Table 11.1 Actions to avoid moving obstacle.

No Speed of moving obstacle Direction of moving obstacle Action

1 Low Approach to robot Manuver slow

2 High Approach to robot Maneuver fast

3 Low Infront of robot Manuver slow

4 High Infront of robot Manuver slow

Figure below shows the proposed model of maneuvering on the service robot,

pL which is the probability of moving obstacle leads to the left, and pR the

probability of moving obstacle leads to the right. By estimating the direction of

motion of the obstacle, then the most appropriate action to avoid to the right /

left side can be determined, to minimize collision with these obstacles. If there

are more than 1 moving obstacle, then robot should identified the nearest

moving obstacle to avoid collision, and the direction of maneuver should be

opposite with the direction of moving obstacle (Figure 7).

Figure 11.5 A maneuvering model to avoids multiple moving obstacle using stereo

vision, 2 multiple moving obstacle with the different direction (a) and the same

direction (b).

Chapter 11 Vision-Based Obstacles Avoidance

http://www.sciencepublishinggroup.com 195

The flowchart of a Navigation system and multiple moving obstacles

avoidance method for vision-based service robot using stereo camera shown in

Figure 11.8. Based on the Figure 8, image captured by stereo camera used as

testing images to be processed by Haar classifier to detect how many people in

the images, and face recognition by PCA. We implement visual tracking for

heading a robot to a customer. Robot continuously measures the distance of

obstacle and send the data to Laptop. The next step is multiple moving obstacle

detection and tracking. If there is no moving obstacle, robot run from start to

goal position in normal speed. The advantage using stereo vision in our system

is the ability to estimate the distance of customer/obstacles (depth estimation)

and direction’s movement of obstacles.

If moving obstacle appeared and collision will occurred, robot will maneuver

to avoids obstacle. The proposed algorithms for obstacles avoidance shown

below:

Algorithm 11.1. Multiple moving obstacles avoidance and maneuvering for

service robot.

Checking a cup sensor // check if cup is loaded or no

Capture face’s images

Face detection and recognition using PCA

if cup loaded and face recognized

// Visual tracking using stereo vision

While (customer !=center screen)

begin

Heading robot to customer’s position

end

if (position of customer at center screen)

begin

Go to customer

call movingObstaclesIdentification

Bayesian processing

if moving obstacle==true and min_distance=true and

goal=false

maneuvering the robot

end if

Giving a glass

Go to home

Modern Robotics with OpenCV

196 http://www.sciencepublishinggroup.com

end

end if

end

// Function to detects and tracks a moving obstacle

function movingObstacleIdentification

moving obstacle detection // Using Haar cascade

classifier

if (moving_obstacle==true) then

//estimate distance between robot and moving obstacle

using stereo vision

distance estimation // Using Stereo camera and Kalman

filtering

// estimate velocity and direction of moving obstacle

Calculate Ov , direction

Endif

Return Ov , direction

end function

Chapter 11 Vision-Based Obstacles Avoidance

http://www.sciencepublishinggroup.com 197

Figure 11.6 Flowchart of A Navigation system and Multiple moving obstacles

avoidance method for vision-based service robot using stereo camera.

The result of improved face recognition system using PCA shown in Figure

11.7, where 1 customer succesfully identified with his order. Before delivering a

cup, visual tracking applied to directs a robot to an identified customer. Robot

succesfully go to the identified customer using our proposed method.

Modern Robotics with OpenCV

198 http://www.sciencepublishinggroup.com

Figure 11.7 An example of face detected and recognized together with his order using

our framework of face recognition system.

Multiple Moving Obstacle Avoidance Using Stereo Vision

The result of identifying multiple moving obstacle shown in figure below, the

advantages if we using stereo vision, we can estimate the distance and

direction/angle of the moving obstacle. The value probability of obstacle/no

obstacle also run well for make a robotics system more robust as as shown

Figure 11.8.

Chapter 11 Vision-Based Obstacles Avoidance

http://www.sciencepublishinggroup.com 199

(a)

(b)

Figure 11.8 value probability of obstacle/no obstacle, (a). results of distance and

direction estimation, (b). implementation of probabilistics robotics for moving obstacles

avoidance using stereo images.

Modern Robotics with OpenCV

200 http://www.sciencepublishinggroup.com

Figure 11.9 Result of moving obstacle avoidance using stereo vision and Bayesian

approach. Sequence action of service robot shown from (a) until (f) to deliver a cup to

an identified customer and go back to home.

For experiment delivering a cup to a customer, the setup experiment is in

indoor where a customer and not customer sat on the chair, and there is

Chapter 11 Vision-Based Obstacles Avoidance

http://www.sciencepublishinggroup.com 201

someone that walking as a moving obstacle as shown below. Robot successfully

identifies a moving obstacle, avoid the collision, giving a cup to a customer then

go back to home. For 10 (ten) times experiment using Bayesian approach, the

success rate to identify moving obstacle is 90%, and without Bayesian approach

is 60%. The very interesting video to show the action of this robot can be

viewed at: http://www.youtube.com/watch?v=n181CtvGJ88.

References

[1] Acosta, L., González, E.J., Rodríguez, J.N., Hamilton, A.F., Méndez J.A.,

Hernéndez S., Sigut S.M, and Marichal G.N. Design and Implementation of a

Service Robot for A Restaurant. International Journal of robotics and automation.

2006; vol. 21(4): pp. 273-281.

[2] Qing-wiau Y., Can Y., Zhuang F. and Yan-Zheng Z. Research of the Localization

of Restaurant Service Robot. International Journal of Advanced Robotic Systems.

2010; vol. 7(3): pp. 227-238.

[3] Chatib, O., Real-Time Obstacle Avoidance for Manipulators and Mobile Robots.,

The International Journal of Robotics Research, 1986; vol. 5(1), pp. 90-98.

[4] Borenstein, J., Koren, Y., The Vector Field Histogram- Fast Obstacle Avoidance

for Mobile Robots, in proc. IEEE Trans. On Robotics and Automation. 1991; vol

7(3): pp.278-288.

[5] S. Nuryono, Penerapan Multi Mikrokontroler pada Model Robot Mobil

Menggunakan Logika Fuzzy, Journal Telkomnika, 2009, vol. 7(3), pp, 213-218.

[6] Masehian E., Katebi Y. Robot Motion Planning in Dynamic Environments with

Moving Obstacles and Target. International Journal of Mechanical Systems

Science and Engineering. 2007; vol. 1(1), pp. 20-29.

[7] Budiharto, W., Purwanto, D. and Jazidie, A. A Robust Obstacle Avoidance for

Service Robot using Bayesian Approach. International Journal of Advanced

Robotic Systems. Intech Publisher – Austria. 2011; Vol. 8(1): pp. 52-60.

[8] Budiharto, W., Purwanto, D. & Jazidie, A. A Novel Method for Static and Moving

Obstacle Avoidance for Service robot using Bayesian Filtering. Proceeding of

IEEE 2nd International conf. on Advances in Computing, Control and

Telecommunications Technology.2010; pp. 156-160. DOI: 10.1109/ACT.2010.51.

[9] Purwanto, D. Visual Feedback Control in Multi-Degrees-of-Freedom Motion

System. PhD thesis at Graduate School of Science and Technology - Keio

University, Japan. 2001.

http://www.youtube.com/watch?v=n181CtvGJ88
http://cs.stanford.edu/groups/manips/images/pdfs/Khatib_1986_IJRR.pdf
http://ijr.sagepub.com/

Modern Robotics with OpenCV

202 http://www.sciencepublishinggroup.com

[10] Turk, M. & Pentland A. Eigenfaces for recognition. International Journal of

Cognitive Neuroscience. 1991; vol. 3(1): pp. 71-86.

[11] Belhumeur, P. & Kriegman, D. What is the set of images of an object under all

possible illumination conditions. International Journal of Computer Vision. 1998;

Vol. 28(3), pp. 245-260.

[12] Etemad, K. & Chellappa R . Discriminant analysis for recognition of human face

images. Journal of the Optical Society of America A. 1997; vol. 14(8): pp. 1724-

1733.

[13] Budiharto, W., Santoso A., Purwanto, D. and Jazidie, A. An Improved Face

recognition System for Service Robot using Stereo Vision. In: Tudor Barbu Editor.

Face Recognition / Book 3. Intech Publisher – Austria; 2011: pp. 1-12.

[14] Hu, H. & Brady, M. A Bayesian Approach to Real-Time Obstacle Avoidance for a

Mobile Robot. Autonomous Robots. 1994; vol. 1: pp. 69-92.

Chapter 12

 Vision-Based Manipulator

http://www.sciencepublishinggroup.com 205

On successful completion of this course, students will be able to:

 Explain how the manipulator works.

 Describe types of manipulator.

 Develop a vision-based manipulator.

Introduction

One of the most common of manipulation tasks is grasping an object. Tasks

performed by humans involve some form of grasping action. In the absence of

feedback, the grasping action cannot be completed effectively. A human being

grasps an object almost invariably with the aid of vision. We use visual

information to identify and locate the object, and then decide how to grasp them.

Inverse Kinematics

In a two-joint arm robot, given the angles of the joints, the kinematics

equations give the location of the tip of the arm. Inverse kinematics refers to the

reverse process. Given a desired location for the tip of the robotic arm, what

should the angles of the joints be so as to locate the tip of the arm at the desired

location? There is usually more than one solution and can at times be a difficult

problem to solve. In a 2-dimensional input space, with a two-joint robotic arm

and given the desired co-ordinate, the problem reduces to finding the two angles

involved. The first angle is between the first arm and the ground (or whatever it

is attached to). The second angle is between the first arm and the second arm.

Figure 12.1 inverse kinematics for 2 DOF arm robot[12].

Modern Robotics with OpenCV

206 http://www.sciencepublishinggroup.com

For simple structures like the two-joint robotic arm, it is possible to

mathematically deduce the angles at the joints given the desired location of the

tip of the arm. However with more complex structures (eg: n-joint robotic arms

operating in a 3-dimensional input space) deducing a mathematical solution for

the inverse kinematics may prove challenging. Using fuzzy logic, we can

construct a Fuzzy Inference System that deduces the inverse kinematics if the

forward kinematics of the problem is known, hence sidestepping the need to

develop an analytical solution.

Vision-Based Manipulator

Most work in robotic manipulation assumes a known 3-D model of the object

and the environment, and focuses on designing control and planning methods to

achieve a successful and stable grasp in simulation environments. Grasping is

usually preceded by a number of tasks that effect the final grasping action. The

sequence of steps involved is:

1) The movement of the end-effector from a given position to within a

reaching position from the object.

2) The estimation of grasp points and orientation of the end-effector to

perform the grasp operation.

3) The grasping action, once the end effector is in the appropriate position.

Based on the previous literature (visual-servoing) is huge and largely

unorganized. A variety of methods have been proposed to solve vision-based

manipulation [1-5]. They use vision to aid just one of the above mentioned steps.

In the past, most approaches to robotic grasping [6] [7] assume availability of a

complete 3-D model of the object to be grasped. In practice, however, such a

model is often not available—the 3D models obtained from a stereo system are

often noisy with many points missing, and 3-D models obtained from a laser

system are very sparse. This makes grasping a hard problem in practice. In

more general grasping, Kamon et al. [8] used Q-learning to control the arm to

reach towards a spherical object to grasp it using a parallel plate gripper.

For grasping 2D planar objects, most prior work focuses on finding the

location of the fingers given the object contour, which one can find quite

reliably for uniformly colored planar objects lying on a uniformly colored table

top. Using local visual features (based on the 2-d contour) and other properties

such as force and form closure, the methods discussed below decide the 2D

location at which to place the fingertips (two or three) to grasp the object.

Chapter 12 Vision-Based Manipulator

http://www.sciencepublishinggroup.com 207

Edsinger and Kemp [9] grasped cylindrical objects using a power grasp by

using visual servoing and do not apply to grasping for general shapes. An

inverse kinematic solver is proposed in [10] to find all joint angles for given

position of the effectors on the manipulator. The target object is recognized by

color segmentation. The 3D position is computed by the stereo vision system

after contour extraction.

Inverse kinematics of manipulator and object location are the key technology

for arm robot. We study various visual feedback methods from previous

literature and develop a new model for grasping a bottle. We know that

Extraction of image information and control of a robot are two separate tasks

where at first image processing is performed followed by the generation of a

control sequence. A typical example is to recognize the object to be

manipulated by matching image features to a model of the object and compute

its pose relative to the camera (robot) coordinate system. In general method,

first the target object is recognized by the vision system which than estimates

the 3D pose of the object. Based on this information, the controller coordinates

to move the arm robot to grasp the object/bottle. The framework proposed in

this experiment shown in fig. 12.2 below, where the stereo camera for pose

estimation attached about 50cm at the side of manipulator.

Figure 12.2 example of vision-based grasping using stereo vision.

Modern Robotics with OpenCV

208 http://www.sciencepublishinggroup.com

We developed a framework of vision-based arm robot using 4 DOF (Degree

of Freedom) arm robot from Lynxmotion that able to delivers fast, accurate, and

repeatable movement. The robot features: base rotation, single plane shoulder,

elbow, wrist motion, a functional gripper, and optional wrist rotate as shown in

figure 12.3. This robotic arm is an affordable system with a time tested rock

solid design that will last and last.

Figure 12.3 4 DOF arm robot using stereo vision used in the experiment.

The specification of this manipulator:

Base: Height = 6.9 cm

Hand/Grip: Max Length (No Wrist Rotate) = 8.7 cm

Hand/Grip: Max Length (With LW Rotate) = 11.3 cm

Hand/Grip: Max Length (With HD Rotate) = 10.0 cm

Length: Forearm = 12.7 cm

Length: Arm = 11.9 cm

Grasping Model

Grasp determination is probably one of the most important questions from

manipulation point of view. Usually, the object is of unknown shape. In our

model, we propose a simple way, if we know the distance of the bottle then

move the arm to that position, then when the center point of a bottle exactly

meet the center point of the gripper, then it means that is the time for grasping

the bottle/object as shown in figure 12.4:

Chapter 12 Vision-Based Manipulator

http://www.sciencepublishinggroup.com 209

Figure 12.4 Finding the center of the bottle using vision (a) and color marking for

indicating the position of gripper with an object [11].

The proposed algorithm for detect an object/bottle, grasp it and move to the

destination is shown below:

do

detect the object/bottle

if object/bottle detected then

 begin

find position of the object/bottle

move arm robot to the object/bottle

move the gripper to the center of the object/bottle

if the position equal

grasp the object/bottle

else

move to gripper to the center of the object/bottle

 end

endif

move the object to destination

go to the initial position

loop

An environment consists of a variety of objects, such as the robot itself, walls,

floor, tables, objects to be grasped, etc. In order to successfully move the arm

Modern Robotics with OpenCV

210 http://www.sciencepublishinggroup.com

without hitting an obstacle, we provide 1 distance sensor at the gripper. To

determine the state of the object, the "good" grasp position should be first

determined. The experiment conducted at our lab to grasp and move a bottle to

the destination. For testing the connection of hardware, we use Lynx SSC-32 as

shown below:

Figure 12.5 using Lynx SSC-32 Terminal for testing the hardware [13].

We use Lynxmotion RIOS (Robotic Arm Interactive Operating System) SSC-

32 software to configure and control the arm robot as shown in figure 12.6:

Chapter 12 Vision-Based Manipulator

http://www.sciencepublishinggroup.com 211

Figure 12.6 Configuring and control the board of arm robot using RIOS SSC-32

Software[13].

After configuring and calibrating the servos of arm robot. We put an

object/bottle in front of the arm robot to be grasped and move to other position.

Based on our experiment we get the expected result as shown in table 12.1.

Table 12.1 Result of Detecting and Grasping an Object in 10x.

No Action Success failure

1 Identify the object as bottle 100% 0%

2 Grasping an object correctly 90% 10%

3 Estimate the distance of the bottle 90% 10%

The accuracy and robustness of the system and the algorithm were tested and

proven to be effective in real scenarios.

Program for object detection and grasping successfully developed with

OpenCV and the manipulator able to grasp it as shown in figure 12.7

Modern Robotics with OpenCV

212 http://www.sciencepublishinggroup.com

Figure 12.7 Object detection and grasping OpenCV.

Exercise

1) Create a simulator program for inverse kinematics using function as shown

below:

data = Convert.ToInt32(txtInput.Text);

MessageBox.Show("value from sin " + data + " "

+Convert.ToString(Math.Sin(Radians2Degrees(data))));

MessageBox.Show("value from cos " +data + " "

+Convert.ToString(Math.Cos(Radians2Degrees(data))));

MessageBox.Show("value from tan " + data + " "+

Convert.ToString(Math.Tan(Radians2Degrees(data))));

MessageBox.Show("value from Theta(Asin) : " +

Convert.ToString((Math.Asin(Math.Sin(Radians2Degrees(data))))*(18

0/Math.PI)));

MessageBox.Show("value from Theta(Acos) : " +

Convert.ToString((Math.Acos(0.866))*(180/Math.PI)));

Chapter 12 Vision-Based Manipulator

http://www.sciencepublishinggroup.com 213

MessageBox.Show("value from Theta(Atan) : " +

Convert.ToString((Math.Atan(Math.Tan(Radians2Degrees(data)))) *

(180 / Math.PI)));

MessageBox.Show("value from Theta2(arccos) : " +

Convert.ToString((Math.Acos(Math.Cos(Radians2Degrees((((x*x)+(y*

y))-(l1*l1)-(l2*l2))/(2*l1*l2))))) * (180 / Math.PI)));

Figure 12.7 Inverse Kinematics Simulator.

2) Create a program to grasp an object using arm robot and stereo vision.

References

[1] A. Bendiksen and G. D. Hager. “A vision-based grasping system for unfamiliar

planar objects“. In ICRA, pages2844–2849, 1994.

[2] H. I. Christensen and P. L. Corke. “Visual servoing“. I. J.Robotic Res., 22(10-

11):779–780,2003.

[3] D. Kragic and H. I. Christensen. “A framework for visual servoing“. In ICVS,

pages 345–354, 2003

[4] A. Bicchi and V. Kumar, “Robotic grasping and contact: a review,” in ICRA, 2000.

Modern Robotics with OpenCV

214 http://www.sciencepublishinggroup.com

[5] J. Jiao, Embedded Vision-Based Autonomous Move-to-Grasp Approach for a

Mobile Manipulator,International Journal of Advanced Robotics System, vol. 9,

pp.1-6, 2012.

[6] K. Shimoga, “Robot grasp synthesis: a survey,” IJRR, vol. 15, pp. 230–266, 1996.

[7] D. Purwanto. Visual Feedback Control in Multi-Degrees-of-Freedom Motion

System. PhD thesis at Graduate School of Science and Technology - Keio

University, Japan, 2001.

[8] I., Kamon, T. Flash, and S. Edelman, “Learning to grasp using visual information,”

in ICRA, 1996.

[9] A. Edsinger and C. C. Kemp, “Manipulation in human environments,” in

IEEE/RAS Int’l Conf on Humanoid Robotics (Humanoids06), 2006.

[10] Y. Yang, “Binocular Stereo Vision based Humanoid Manipulator Control”, 30th

International Conference on Control, pp. 3996 - 4001, China. 2011.

[11] Widodo Budiharto, Bayu Kanigoro and Anita Rahayu, Vision-Based Grasping for

Manipulator using Object Features, Annual Conference on Engineering and

Information Technology, pp. 228-235, Japan, March 28-30th, 2014.

[12] Matworks.com.

[13] www.lynxmotion.com.

http://www.sciencepublishinggroup.com 215

Glossary

Artificial Intelligence: is the mimicking of human thought and cognitive

processes to solve complex problems automatically. AI uses techniques for

writing computer code to represent and manipulate knowledge.

Autonomous: Operating without pre-programmed behaviors and without

supervision from humans.

Action-Based Planning: The goal of action-based planning is to determine

how to decompose a high level action into a network of sub actions that perform

the requisite task. Therefore the major task within such a planning system is to

manage the constraints that apply to the interrelationships (e.g., ordering

constraints) between actions. In fact, action-based planning is best viewed as a

constraint satisfaction problem.

Agents: Agents are software programs that are capable of autonomous, flexible,

purposeful and reasoning action in pursuit of one or more goals. They are

designed to take timely action in response to external stimuli from their

environment on behalf of a human. When multiple agents are being used

together in a system, individual agents are expected to interact together as

appropriate to achieve the goals of the overall system.

Agent Architecture: There are two levels of agent architecture, when a number

of agents are to work together for a common goal. There is the architecture of

the system of agents, that will determine how they work together, and which

does not need to be concerned with how individual agents fulfill their sub-

missions; and the architecture of each individual agent, which does determine

its inner workings.

Algorithm: An algorithm is a set of instructions that explain how to solve a

problem. It is usually first stated in English and arithmetic, and from this, a

programmer can translate it into executable code (that is, code to be run on a

computer).

Modern Robotics with OpenCV

216 http://www.sciencepublishinggroup.com

Associative Memories: Associative memories work by recalling information in

response to an information cue. Associative memories can be auto associative or

hetero associative. Auto associative memories recall the same information that

is used as a cue, which can be useful to complete a partial pattern.

Camera: A camera is a device used to take pictures, either singly or in

sequence. A camera that takes pictures singly is sometimes called a photo

camera to distinguish it from a video camera.

Decision Theory: Decision theory provides a basis for making choices in the

face of uncertainty, based on the assignment of probabilities and payoffs to all

possible outcomes of each decision. The space of possible actions and states of

the world is represented by a decision tree.

Degrees of Freedom: The number of independent variables in the system. Each

joint in a serial robot represents a degree of freedom.

Dexterity: A measure of the robot's ability to follow complex paths.

Dynamic Model: A mathematical model describing the motions of the robot

and the forces that cause them.

Egomotion: determining the 3D rigid motion (rotation and translation) of the

camera from an image sequence produced by the camera.

Tracking: following the movements of a (usually) smaller set of interest points

or objects (e.g., vehicles or humans) in the image sequence.

Optical Flow: to determine, for each point in the image, how that point is

moving relative to the image plane, i.e., its apparent motion. This motion is a

result both of how the corresponding 3D point is moving in the scene and how

the camera is moving relative to the scene.

End-Effector: The robot's last link. The robot uses the end-effector to

accomplish a task. The end-effector may be holding a tool, or the end-effector

itself may be a tool. The end-effector is loosely comparable to a human's hand.

Chapter 12 Vision-Based Manipulator

http://www.sciencepublishinggroup.com 217

Edge Detection: Edge Detection marks the points in a digital image at which

the luminous intensity changes sharply.

Expert System: An expert system encapsulates the specialist knowledge gained

from a human expert (such as a bond trader or a loan underwriter) and applies

that knowledge automatically to make decisions.

Frame grabber: An electronic device that captures individual, digital still

frames from an analog video signal or a digital video stream.

Game Theory: Game theory is a branch of mathematics that seeks to model

decision making in conflict situations.

Grayscale: A grayscale digital image is an image in which the value of each

pixel is a single sample. Displayed images of this sort are typically composed of

shades of gray, varying from black at the weakest intensity to white at the

strongest, though in principle the samples could be displayed as shades of any

color, or even coded with various colors for different intensities.

Genetic Algorithms: Search algorithms used in machine learning which

involve iteratively generating new candidate solutions by combining two high

scoring earlier (or parent) solutions in a search for a better solution.

HSV Color Space: The HSV (Hue, Saturation, Value) model, also called HSB

(Hue, Saturation, Brightness), defines a color space in terms of three constituent

components: Hue, the color type (such as red, blue, or yellow), Saturation, the

"vibrancy" of the color and colorimetric purity and Value, the brightness of the

color.

Inference Engine: The part of an expert system responsible for drawing new

conclusions from the current data and rules. The inference engine is a portion of

the reusable part of an expert system (along with the user interface, a knowledge

base editor, and an explanation system), that will work with different sets of

case-specific data and knowledge bases.

Modern Robotics with OpenCV

218 http://www.sciencepublishinggroup.com

Inverse Kinematics: The inverse kinematics problem is to find the robot's joint

displacements given position and orientation constraints on the robot's end-

effector.

Jacobian: The matrix of first-order partial derivatives. For robots, the Jacobian

relates the end- effector velocity the joint speeds.

Joint Space: A coordinate system used to describe the state of the robot in

terms of its joint states. Inverse kinematics may also be thought of as a mapping

from end-effector space to joint space.

Machine Learning: refers to the ability of computers to automatically acquire

new knowledge, learning from, for example, past cases or experience, from the

computer's own experiences, or from exploration.

Machine Vision: Machine Vision is the application of computer vision to

industry and manufacturing.

Motion Perception: MP is the process of inferring the speed and direction of

objects and surfaces that move in a visual scene given some visual input.

Neural Networks: Neural Networks are an approach to machine learning which

developed out of attempts to model the processing that occurs within the

neurons of the brain. By using simple processing units (neurons), organized in a

layered and highly parallel architecture, it is possible to perform arbitrarily

complex calculations. Learning is achieved through repeated minor

modifications to selected neurons, which results in a very powerful

classification system.

Pattern Recognition: This is a field within the area of machine learning.

Alternatively, it can be defined as the act of taking in raw data and taking an

action based on the category of the data. It is a collection of methods for

supervised learning.

Pixel: A pixel is one of the many tiny dots that make up the representation of a

picture in a computer's memory or screen.

Chapter 12 Vision-Based Manipulator

http://www.sciencepublishinggroup.com 219

Pixelation: In computer graphics, pixelation is an effect caused by displaying a

bitmap or a section of a bitmap at such a large size that individual pixels, small

single-colored square display elements that comprise the bitmap, are visible.

Simulated Annealing: Simulated annealing is an optimization method based on

an analogy with the physical process of toughening alloys, such as steel, called

annealing.

Serial Robot: A serial robot is a single chain of joints connected by links.

Singularity: A position in the robot's workspace where one or more joints no

longer represent independent controlling variables. Commonly used to indicate

a position where a particular mathematical formulation fails.

Statics: The study of forces that do not cause motion.

Velocity-Level: Mathematical formulations working with the joint speeds.

Integrating the joint speeds once provides the displacements. See acceleration-

level and position-level.

Workspace: The maximum reach space refers to all of the points the robot can

possibly reach. The dexterous workspace is all of the possible points the robot

can reach with an arbitrary orientation. The dexterous workspace is usually a

subspace of the maximum reach space.

	wbudiharto@binus.edu-1
	页面 1

	16-23 - 副本
	Intelligent Robotics with OpenCV(09.9)（www）
	16-23
	wbudiharto@binus.edu-2
	页面 1

